1
|
Casterton RL, Hunt RJ and Fanto M:
Pathomechanism heterogeneity in the amyotrophic lateral sclerosis
and frontotemporal dementia disease spectrum: Providing focus
through the lens of autophagy. J Mol Biol. 432:2692–2713.
2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Kiernan MC, Vucic S, Cheah BC, Turner MR,
Eisen A, Hardiman O, Burrell JR and Zoing MC: Amyotrophic lateral
sclerosis. Lancet. 377:942–955. 2011.PubMed/NCBI View Article : Google Scholar
|
3
|
Mejzini R, Flynn LL, Pitout IL, Fletcher
S, Wilton SD and Akkari PA: ALS genetics, mechanisms, and
therapeutics: Where are we now? Front Neurosci.
13(1310)2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Suzuki N, Nishiyama A, Warita H and Aoki
M: Genetics of amyotrophic lateral sclerosis: Seeking therapeutic
targets in the era of gene therapy. J Hum Genet. 68:131–152.
2023.PubMed/NCBI View Article : Google Scholar
|
5
|
Smith BN, Topp SD, Fallini C, Shibata H,
Chen HJ, Troakes C, King A, Ticozzi N, Kenna KP, Soragia-Gkazi A,
et al: Mutations in the vesicular trafficking protein annexin A11
are associated with amyotrophic lateral sclerosis. Sci Transl Med.
9(eaad9157)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Jiang Q, Lin J, Wei Q, Li C, Hou Y, Cao B,
Zhang L, Ou R, Liu K, Yang T, et al: Genetic analysis of and
clinical characteristics associated with ANXA11 variants in a
Chinese cohort with amyotrophic lateral sclerosis. Neurobiol Dis.
175(105907)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Johari M, Papadimas G, Papadopoulos C,
Xirou S, Kanavaki A, Chrysanthou-Piterou M, Rusanen S, Savarese M,
Hackman P and Udd B: Adult-onset dominant muscular dystrophy in
Greek families caused by Annexin A11. Ann Clin Transl Neurol.
9:1660–1667. 2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Liu X, Wu C, He J, Zhang N and Fan D: Two
rare variants of the ANXA11 gene identified in Chinese patients
with amyotrophic lateral sclerosis. Neurobiol Aging. 74:235 e9–235
e12. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Nagy ZF, Pal M, Salamon A, Kafui Esi
Zodanu G, Füstös D, Klivényi P and Széll M: Re-analysis of the
Hungarian amyotrophic lateral sclerosis population and evaluation
of novel ALS genetic risk variants. Neurobiol Aging. 116:1–11.
2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Nahm M, Lim SM, Kim YE, Park J, Noh MY,
Lee S, Roh JE, Hwang SM, Park CK, Kim YH, et al: ANXA11 mutations
in ALS cause dysregulation of calcium homeostasis and stress
granule dynamics. Sci Transl Med. 12(eaax3993)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Nel M, Mahungu AC, Monnakgotla N, Botha
GR, Mulder NJ, Wu G, Rampersaud E, van Blitterswijk M, Wuu J,
Cooley A, et al: Revealing the mutational spectrum in Southern
Africans with amyotrophic lateral sclerosis. Neurol Genet.
8(e654)2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Sainouchi M, Hatano Y, Tada M, Ishihara T,
Ando S, Kato T, Tokunaga J, Ito G, Miyahara H, Toyoshima Y, et al:
A novel splicing variant of ANXA11 in a patient with amyotrophic
lateral sclerosis: Histologic and biochemical features. Acta
Neuropathol Commun. 9(106)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Teyssou E, Muratet F, Amador MD, Ferrien
M, Lautrette G, Machat S, Boillée S, Larmonier T, Saker S, Leguern
E, et al: Genetic screening of ANXA11 revealed novel mutations
linked to amyotrophic lateral sclerosis. Neurobiol Aging. 99:102
e11–102 e20. 2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang Y, Duan X, Zhou X, Wang R, Zhang X,
Cao Z, Wang X, Zhou Z, Sun Y and Peng D: ANXA11 mutations are
associated with amyotrophic lateral sclerosis-frontotemporal
dementia. Front Neurol. 13(886887)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Yang X, Sun X, Liu Q, Liu L, Li J, Cai Z,
Zhang K, Liu S, He D, Shen D, et al: Mutation spectrum of chinese
amyotrophic lateral sclerosis patients with frontotemporal
dementia. Orphanet J Rare Dis. 17(404)2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhang K, Liu Q, Liu K, Shen D, Tai H, Shu
S, Ding Q, Fu H, Liu S, Wang Z, et al: ANXA11 mutations prevail in
Chinese ALS patients with and without cognitive dementia. Neurol
Genet. 4(e237)2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Natera-de Benito D, Olival J, Garcia-Cabau
C, Jou C, Roldan M, Codina A, Expósito-Escudero J, Batlle C,
Carrera-García L, Ortez C, et al: Common pathophysiology for ANXA11
disorders caused by aspartate 40 variants. Ann Clin Transl Neurol.
10:408–425. 2023.PubMed/NCBI View Article : Google Scholar
|
18
|
Leoni TB, Gonzalez-Salazar C, Rezende TJR,
Hernández ALC, Mattos AHB, Coimbra Neto AR, da Graça FF, Gonçalves
JPN, Martinez ARM, Taniguti L, et al: A novel multisystem
proteinopathy caused by a missense ANXA11 Variant. Ann Neurol.
90:239–252. 2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Kim EJ, Moon SY, Kim HJ, Jung NY, Lee SM
and Kim YE: Semantic variant primary progressive aphasia with a
pathogenic variant p.Asp40Gly in the ANXA11 gene. Eur J Neurol.
29:3124–3126. 2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Fernandopulle M, Wang G, Nixon-Abell J,
Qamar S, Balaji V, Morihara R and St George-Hyslop PH: Inherited
and sporadic amyotrophic lateral sclerosis and fronto-temporal
lobar degenerations arising from pathological condensates of phase
separating proteins. Hum Mol Genet. 28 (R2):R187–R196.
2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Liao YC, Fernandopulle MS, Wang G, Choi H,
Hao L, Drerup CM, Patel R, Qamar S, Nixon-Abell J, Shen Y, et al:
RNA granules hitchhike on lysosomes for long-distance transport,
using annexin A11 as a molecular tether. Cell. 179:147–164 e20.
2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Sung W, Nahm M, Lim SM, Noh MY, Lee S,
Hwang SM, Kim YH, Park J, Oh KW, Ki CS, et al: Clinical and genetic
characteristics of amyotrophic lateral sclerosis patients with
ANXA11 variants. Brain Commun. 4(fcac299)2022.PubMed/NCBI View Article : Google Scholar
|
23
|
Casci I and Pandey UB: A fruitful
endeavor: Modeling ALS in the fruit fly. Brain Res. 1607:47–74.
2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Sreedharan J, Neukomm LJ, Brown RH Jr and
Freeman MR: Age-Dependent TDP43-mediated motor neuron degeneration
requires GSK3, hat-trick, and xmas-2. Curr Biol. 25:2130–2136.
2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Watson MR, Lagow RD, Xu K, Zhang B and
Bonini NM: A Drosophila model for amyotrophic lateral
sclerosis reveals motor neuron damage by human SOD1. J Biol Chem.
283:24972–24981. 2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Romano G, Klima R, Buratti E, Verstreken
P, Baralle FE and Feiguin F: Chronological requirements of TDP43
function in synaptic organization and locomotive control. Neurobiol
Dis. 71:95–109. 2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Mazaud D, Kottler B, Goncalves-Pimentel C,
Proelss S, Tüchler N, Deneubourg C, Yuasa Y, Diebold C, Jungbluth
H, Lai EC, et al: Transcriptional Regulation of the
Glutamate/GABA/Glutamine Cycle in adult glia controls motor
activity and seizures in Drosophila. J Neurosci.
39:5269–5283. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Marchica V, Biasetti L, Barnard J, Li S,
Nikolaou N, Frosch MP, Lucente DE, Eldaief M, King A, Fanto M, et
al: Annexin A11 mutations are associated with nuclear envelope
dysfunction in vivo and in human tissue. Brain: Jul 11, 2024 (Epub
ahead of print). doi: 10.1093/brain/awae226.
|
29
|
Baron O, Boudi A, Dias C, Schilling M,
Nölle A, Vizcay-Barrena G, Rattray I, Jungbluth H, Scheper W, Fleck
RA, et al: Stall in canonical autophagy-lysosome pathways prompts
nucleophagy-based nuclear breakdown in neurodegeneration. Curr
Biol. 27:3626–3642.e6. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Wang A, Conicella AE, Schmidt HB, Martin
EW, Rhoads SN, Reeb AN, Nourse A, Ramirez Montero D, Ryan VH,
Rohatgi R, et al: A single N-terminal phosphomimic disrupts TDP43
polymerization, phase separation, and RNA splicing. EMBO J.
37(e97452)2018.PubMed/NCBI View Article : Google Scholar
|