1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Marin JJG, Macias RIR, Monte MJ, Herraez
E, Peleteiro-Vigil A, Blas BS, Sanchon-Sanchez P, Temprano AG,
Espinosa-Escudero RA, Lozano E, et al: Cellular mechanisms
accounting for the refractoriness of colorectal carcinoma to
pharmacological treatment. Cancers (Basel). 12(2605)2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Markham MJ, Wachter K, Agarwal N,
Bertagnolli MM, Chang SM, Dale W, Diefenbach CSM, Rodriguez-Galindo
C, George DJ, Gilligan TD, et al: Clinical cancer advances 2020:
Annual report on progress against cancer from the American Society
of Clinical Oncology. J Clin Oncol. 38(1081)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: A leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009.PubMed/NCBI View
Article : Google Scholar
|
5
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting theIL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin
Oncol. 15:234–248. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Ge QX, Li YY, Nie YQ, Zuo WG and Du YL:
Expression of survivin and its four splice variants in colorectal
cancer and its clinical significances. Med Oncol.
30(535)2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC,
Hwang JI, Chung CW, Jung YK and Oh BH: An anti-apoptotic protein
human survivin is a direct inhibitor of caspase-3 and -7.
Biochemistry. 40:1117–1123. 2001.PubMed/NCBI View Article : Google Scholar
|
8
|
Darnell JE Jr: STATs and gene regulation.
Science. 277:1630–1635. 1997.PubMed/NCBI View Article : Google Scholar
|
9
|
Ehret GB, Reichenbach P, Schindler U,
Horvath CM, Fritz S, Nabholz M and Bucher P: DNA binding
specificity of different STAT proteins. Comparison of in vitro
specificity with natural target sites. J Biol Chem. 276:6675–6688.
2001.PubMed/NCBI View Article : Google Scholar
|
10
|
Furtek SL, Backos DS, Matheson CJ and
Reigan P: Strategies and approaches of targeting STAT3 for cancer
treatment. ACS Chem Biol. 11:308–318. 2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Liu LJ, Leung KH, Chan DSH, Wang YT, Ma DL
and Leung CH: Identification of a natural product-like STAT3
dimerization inhibitor by structure-based virtual screening. Cell
Death Dis. 5:e1293. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Sgrignani J, Garofalo M, Matkovic M,
Merulla J, Catapano CV and Cavalli A: Structural Biology of STAT3
and its implications for anticancer therapies development. Int J
Mol Sci. 19(1591)2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Hillmer EJ, Zhang H, Li HS and Watowich
SS: STAT3 signaling in immunity. Cytokine Growth Factor Rev.
31:1–15. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Donepudi M and Grütter MG: Structure and
zymogen activation of caspases. Biophys Chem. 101-102:145–153.
2002.PubMed/NCBI View Article : Google Scholar
|
15
|
Thornberry NA and Lazebnik Y: Caspases:
Enemies within. Science. 281:1312–1316. 1998.PubMed/NCBI View Article : Google Scholar
|
16
|
Ambrosini G, Adida C and Altieri DC: A
novel anti-apoptosis gene, survivin, expressed in cancer and
lymphoma. Nat Med. 3:917–921. 1997.PubMed/NCBI View Article : Google Scholar
|
17
|
Fukuda S and Pelus LM: Survivin, a cancer
target with an emerging role in normal adult tissues. Mol Cancer
Ther. 5:1087–1098. 2006.PubMed/NCBI View Article : Google Scholar
|
18
|
Boidot R, Vegran F and Lizard-Nacol S:
Transcriptional regulation of the survivin gene. Mol Biol Rep.
41:233–240. 2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Lens SM, Wolthuis RM, Klompmaker R, Kauw
J, Agami R, Brummelkamp T, Kops G and Medema RH: Survivin is
required for a sustained spindle checkpoint arrest in response to
lack of tension. EMBO J. 22:2934–2947. 2003.PubMed/NCBI View Article : Google Scholar
|
20
|
Rosa J, Canovas P, Islam A, Altieri DC and
Doxsey SJ: Survivin modulates microtubule dynamics and nucleation
throughout the cell cycle. Mol Biol Cell. 17:1483–1493.
2006.PubMed/NCBI View Article : Google Scholar
|
21
|
Pavlyukov MS, Antipova NV, Balashova MV,
Vinogradova TV, Kopantzev EP and Shakhparonov MI: Survivin monomer
plays an essential role in apoptosis regulation. J Biol Chem.
286:23296–23307. 2011.PubMed/NCBI View Article : Google Scholar
|
22
|
Marusawa H, Matsuzawa S, Welsh K, Zou H,
Armstrong R, Tamm I and Reed JC: HBXIP functions as a cofactor of
survivin in apoptosis suppression. EMBO J. 22:2729–2740.
2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Verhagen AM, Coulson EJ and Vaux DL:
Inhibitor of apoptosis proteins and their relatives: IAPs and other
BIRPs. Genome Biol. 2(REVIEWS3009)2001.PubMed/NCBI View Article : Google Scholar
|
24
|
Song Z, Liu S, He H, Hoti N, Wang Y, Feng
S and Wu M: A single amino acid change (Asp53-Ala53) converts
survivin from anti-apoptotic to pro-apoptotic. Mol Biol Cell.
15:1287–1296. 2004.PubMed/NCBI View Article : Google Scholar
|
25
|
Sanhueza C, Wehinger S, Castillo Bennett
J, Valenzuela M, Owen GI and Quest AF: The twisted survivin
connection to angiogenesis. Mol Cancer. 14(198)2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Cheung CHA, Chang YC, Lin TY, Cheng SM and
Leung E: Anti-apoptotic proteins in the autophagic world: An update
on fucntions of XIAP, Survivin, and BRUCE. J Biomed Sci.
27(31)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Mull AN, Klar A and Navara CS:
Differential localization and high expression of SURVIVIN splice
variants in human embryonic stem cells but not in differentiated
cells implicate a role for SURVIVIN in pluripotency. Stem Cell Res.
12:539–549. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Erdogan F, Radu TB, Orlova A, Qadree AK,
de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M,
Moriggl R and Gunning PT: JAK-STAT core cancer pathway: An
integrative cancer interactome analysis. J Cell Mol Med.
26:2049–2062. 2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Kusaba T, Nakayama T, Yamazumi K, Yakata
Y, Yoshizaki A, Inoue K, Nagayasu T and Sekine I: Activation of
STAT3 is a marker of poor prognosis in human colorectal cancer.
Oncol Rep. 15:1445–1451. 2006.PubMed/NCBI
|
30
|
Morikawa T, Baba Y, Yamauchi M, Kuchiba A,
Nosho K, Shima K, Tanaka N, Huttenhower C, Frank DA, Fuchs CS and
Ogino S: STAT3 expression, molecular features, inflammation
patterns, and prognosis in a database of 724 colorectal cancers.
Clin Cancer Res. 17:1452–1462. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Rokavec M, Öner MG, Li H, Jackstadt R,
Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et
al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated
colorectal cancer invasion and metastasis. Clin Invest.
124:1853–1867. 2014.PubMed/NCBI View
Article : Google Scholar
|
32
|
Yamamoto T, Tsunedomi R, Nakajima M,
Suzuki N, Yoshida S, Tomochika S, Xu M, Nakagami Y, Matsui H,
Tokumitsu Y, et al: IL-6 levels correlate with prognosis and
immunosuppressive stromal cells in patients with colorectal cancer.
Ann Surg Oncol. 30:5267–5277. 2023.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen WC, Liu Q, Fu JX and Kang SY:
Expression of survivin and its significance in colorectal cancer.
World J Gastroenterol. 10:2886–2889. 2004.PubMed/NCBI View Article : Google Scholar
|
34
|
Suga K, Yamamoto T, Yamada Y, Miyatake S,
Nakagawa T and Tanigawa N: Correlation between transcriptional
expression of survivin isoforms and clinicopathological findings in
human colorectal carcinomas. Oncol Rep. 13:891–897. 2005.PubMed/NCBI
|
35
|
Wang H, Li S, Luo X, Song Z, Long X and
Zhu X: Knockdown of PARP6 or survivin promotes cell apoptosis and
inhibits cell invasion of colorectal adenocarcinoma cells. Oncol
Rep. 37:2245–2251. 2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Kawasaki H, Toyoda M, Shinohara H, Okuda
J, Watanabe I, Yamamoto T, Tanaka K, Tenjo T and Tanigawa N:
Expression of survivin correlates with apoptosis, proliferation,
and angiogenesis during human colorectal tumorigenesis. Cancer.
91:2026–2032. 2001.PubMed/NCBI View Article : Google Scholar
|
37
|
Waniczek D, Nowak M, Lorenc-Góra J,
Muc-Wierzgoń M, Mazurek U, Bichalska-Lach M and Lorenc Z: The
transcriptional activity profile of inhibitor apoptosis protein
encoding genes in colon cancer patients: A STROBE-compliant study.
Medicine (Baltimore). 100(e27882)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Tuncel H, Shimamoto F, Kaneko Guangying Qi
H, Aoki E, Jikihara H, Nakai S, Takata T and Tatsuka M: Nuclear
aurora B and cytoplasmic survivin expression is involved in lymph
node metastasis of colorectal cancer. Oncol Lett. 3:1109–1114.
2012.PubMed/NCBI View Article : Google Scholar
|
39
|
Endo T, Abe S, Seidlar HB, Nagaoka S,
Takemura T, Utsuyama M, Kitagawa M and Hirokawa K: Expression of
IAP family proteins in colon cancers from patients with different
age groups. Cancer Immunol Immunother. 53:770–776. 2004.PubMed/NCBI View Article : Google Scholar
|
40
|
Lassmann S, Schuster I, Walch A, Göbel H,
Jütting U, Makowiec F, Hopt U and Werner M: STAT3 mRNA and protein
expression in colorectal cancer: Effects on STAT3-inducible targets
linked to cell survival and proliferation. J Clin Pathol.
60:173–179. 2007.PubMed/NCBI View Article : Google Scholar
|
41
|
Li J, Liu YY, Yang KF, Shen DF, Sun HZ,
Huang KQ and Zheng HC: Effects and mechanism of STAT3 silencing on
the growth and apoptosis of colorectal cancer cells. Oncol Lett.
16:5575–5582. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Li W, Lee MR, Kim T, Kim YW and Cho MY:
Activated STAT3 may participate in tumor progression through
increasing CD133/survivin expression in early stage of colon
cancer. Biochem Biophys Res Commun. 497:354–361. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Maresca C, Di Maggio G, Stolfi C, Laudisi
F, Colella M, Pacifico T, Di Grazia A, Di Fusco D, Congiu D, Guida
AM, et al: Smad7 sustains STAT3 expression and signaling in colon
cancer cells. Cancers (Basel). 14(4993)2022.PubMed/NCBI View Article : Google Scholar
|
44
|
Angevin E, Tabernero J, Elez E, Cohen SJ,
Bahleda R, van Laethem JL, Ottensmeier C, Lopez-Martin JA, Clive S,
Joly F, et al: A phase I/II, multiple-dose, dose-escalation study
of siltuximab, an anti-interleukin-6 monoclonal antiboy, in
patients with advanced solid tumors. Cancer Res. 20:2192–2204.
2014.PubMed/NCBI View Article : Google Scholar
|
45
|
Kampan NC, Xiang SD, McNally OM, Stephens
AN, Quinn MA and Plebanski M: Immunotherapeutic interleukin-6 or
interleukin-6 receptor blockade in cancer: Challenges and
opportunities. Curr Med Chem. 25:4785–4806. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Lin L, Liu Y, Li H, Li PK, Fuchs J,
Shibata H, Iwabuchi Y and Lin J: Targeting colon cancer stem cells
using a new curcumin analogue, GO-Y030. Br J Cancer. 105:212–220.
2011.PubMed/NCBI View Article : Google Scholar
|
47
|
Chung SS, Dutta P, Chard N, Wu Y, Chen QH,
Chen G and Vadgama J: A novel curcumin analog inhibits canonical
and non-canonical functions of telomerase through STAT3 and NK-kB
inactivation in colorectal cancer cells. Oncotarget. 10:4516–4531.
2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Yang L, Yao Y, Bai Y, Zheng D, Zhou F,
Chen L, Hu W, Xiang Y, Zhao H, Liu Z, et al: Effect of the
isoflavone corylin from Cullen corylifolium on colorectal cancer
growth, by targeting the STAT3 signaling pathway. Phytomedicine.
80(153366)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Zhang B, Xu Y, Liu S, Lv H, Hu Y, Wang Y,
Li Z, Wang J, Ji X, Ma H, et al: Dietary supplementation of foxtail
millet ameliorates colitis-associated colorectal cancer in mice via
activation of gut receptors and suppression of the STAT3 pathway.
Nutrients. 12(2367)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Zhou Y, Xiang S, Zheng H, Hou Y, Wang Y,
Li CC, Wu Q, Shi J and Chen X: Neferine suppresses experimental
colitis-associated colorectal cancer by inhibition of NF-[Formula:
see text] B p65 and STAT3. Am J Chin Med. 50:1387–1400.
2022.PubMed/NCBI View Article : Google Scholar
|
51
|
Zhang ZH, Li MY, Wang Z, Zuo HX, Wang JY,
Xing Y, Jin C, Xu G, Piao L, Piao H, et al: Convallatoxin promotes
apoptosis and inhibits proliferation and angiogenesis through
crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling
pathways in colorectal cancer. Phytomedicine.
68(153172)2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Zheng GW, Tang MM, Shu CY, Xin WX, Zhang
YH, Chi BB, Shi MR, Guo X, Zhang ZZ and Lian XY: A small neural
molecule CADPE kills residual colorectal cancer cells by inhibiting
key transcription factors and translation initiation factors. Cell
Death Dis. 11(982)2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Xu L, Shi L, Qiu S, Chen S, Lin M, Xiang
Y, Zhao C, Zhu J, Shen L and Zuo Z: Design, synthesis, and
evaluation of cyanopyridines as anti-colorectal cancer agents via
inhibiting STAT3 pathway. Drug Des Devel Ther. 13:3369–3381.
2019.PubMed/NCBI View Article : Google Scholar
|
54
|
De Carvalho TG, Lara P, Jorquera-Cordero
C, Aragao CFS, de Santana Oliveira A, Garcia VB, de Paiva Souza SV,
Schomann T, Soares LAL, da Matta Guedes PM and de Araújo Júnior RF:
Inhibition of murine colorectal cancer metastasis by targeting
M2-TAM through STAT3/NF-kB/AKT signaling using macrophage 1-derived
extracellular vesicles loaded with oxaliplatin, retinoic acid, and
Libidibia ferrea. Biomed Pharmacother. 168(115663)2023.PubMed/NCBI View Article : Google Scholar
|
55
|
Spitzner M, Roesler B, Bielfeld C, Emons
G, Gaedcke J, Wolff HA, Rave-Fränk M, Kramer F, Beissbarth T, Kitz
J, et al: STAT3 inhibitor sensitizes colorectal cancer to
chemoradiotherapy in vitro and in vivo. Int J Cancer. 134:997–1007.
2014.PubMed/NCBI View Article : Google Scholar
|
56
|
Liu Z, Wang H, Guan L, Lai C, Yu W and Lai
M: LL1, a novel highly selective STAT3 inhibitor, displays
anti-colorectal cancer activities in vitro and in vivo. Br J
Pharmacol. 177:298–313. 2020.PubMed/NCBI View Article : Google Scholar
|
57
|
Wei N, Li J, Fang C, Chang J, Xirou V,
Syrigos NK, Marks BJ, Chu E and Schmitz JC: Targeting colon cancer
with the novel STAT3 inhibitor bruceantinol. Oncogene.
38:1676–1687. 2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Bharadwaj U, Eckols TK, Xu X, Kasembeli
MM, Chen Y, Adachi M, Song Y, Mo Q, Lai SY and Tweardy DJ:
Small-molecule inhibition of STAT3 in radioresistant head and neck
squamous cell carcinoma. Oncotarget. 7:26307–26330. 2016.PubMed/NCBI View Article : Google Scholar
|
59
|
Seth PP, Vasquez G, Allerson CA, Berdeja
A, Gaus H, Kinberger GA, Prakash TP, Migawa MT, Bhat B and Swayze
EE: Synthesis and biophysical evaluation of 2',4'-constrained
2'O-methoxyethyl and 2',4'-constrained 2'O-ethyl nucleic acid
analogues. J Org Chem. 75:1569–1581. 2010.PubMed/NCBI View Article : Google Scholar
|
60
|
Nishina T, Fujita T, Yoshizuka N,
Sugibayashi K, Murayama K and Kuboki Y: Safety, tolerability,
pharmacokinetics and preliminary antitumor activity of an antisense
oligonucleotide targeting STAT3 (danvatirsen) as monotherapy and in
combination with durvalumab in Japanese patients with advanced
solid malignancies: A phase 1 study. BMJ Open.
12(e055718)2022.PubMed/NCBI View Article : Google Scholar
|
61
|
Frampton JE and Brogden RN: Pentoxifylline
(oxpentifylline). A review of its therapeutic efficacy in the
management of peripheral vascular and cerebrovascular disorders.
Drugs Aging. 7:480–503. 1995.PubMed/NCBI View Article : Google Scholar
|
62
|
Kamran MZ and Gude RP: Pentoxifylline
inhibits melanoma tumor growth and angiogenesis by targeting STAT3
signaling pathway. Biomed Pharmacother. 67:399–405. 2013.PubMed/NCBI View Article : Google Scholar
|
63
|
Meirovitz A, Baider L, Peretz T, Stephanos
S and Barak V: Effect of pentoxifylline on colon cancer patients
treated with chemotherapy (Part I). Tumour Biol. 43:341–349.
2021.PubMed/NCBI View Article : Google Scholar
|
64
|
Meirovitz A, Baider L, Peretz T, Stephanos
S and Barak V: PTX treatment of colon cancer: Mode of action based
on tumor marker and cytokine kinetics. Anticancer Res.
42:5487–5496. 2022.PubMed/NCBI View Article : Google Scholar
|
65
|
Shao Z, Wang H, Ren H, Sun Y and Chen X:
The anticancer effect of Napabucasin (BBI608), a natural
naphthoquinone. Molecules. 28(5678)2023.PubMed/NCBI View Article : Google Scholar
|
66
|
Jonker DJ, Nott L, Yoshino T, Gill S,
Shapiro J, Ohtsu A, Zalcberg J, Vickers MM, Wei AC, Gao Y, et al:
Napabucasin versus placebo in refractory advanced colorectal
cancer: A randomised phase 3 trial. Lancet Gastroenterol Hepatol.
3:263–270. 2018.PubMed/NCBI View Article : Google Scholar
|
67
|
Kawazoe A, Kuboki Y, Bando H, Fukuoka S,
Kojima T, Naito Y, Iino S, Yodo Y, Doi T, Shitara K and Yoshino T:
Phase 1 study of napabucasin, a cancer stemness inhibitor, in
patients with advanced solid tumors. Cancer Chemother Pharmacol.
85:855–862. 2020.PubMed/NCBI View Article : Google Scholar
|
68
|
Taniguchi H, Masuishi T, Kawazoe A, Muro
K, Kadowaki S, Bando H, Iino S, Kageyama R and Yoshino T: Phase I
study of napabucasin in combination with FOLFIRI + bevacizumab in
Japanese patients with metastatic colorectal cancer. Int J Clin
Oncol. 26:2017–2024. 2021.PubMed/NCBI View Article : Google Scholar
|
69
|
Kawazoe A, Kuboki Y, Shinozaki E, Hara H,
Nishina T, Komatsu Y, Yuki S, Wakabayashi M, Nomura S, Sato A, et
al: Multicenter phase I/II trial of napabucasin and pembrolizumab
in patients with metastasic colorectal cancer (EPOC1503/SCOOP
trial). Clin Cancer Res. 26:5887–5894. 2020.PubMed/NCBI View Article : Google Scholar
|
70
|
Shah MA, Yoshino T, Tebbutt NC, Grothey A,
Tabernero J, Xu RH, Cervantes A, Oh SC, Yamaguchi K, Fakih M, et
al: Napabucasin plus FOLFIRI in patients with previously treated
metastasic colorectal cancer: Results from the open-label,
randomized, phase III CanStem303C study. Clin Colorectal Cancer.
22:100–110. 2023.PubMed/NCBI View Article : Google Scholar
|
71
|
Li WL, Lee MR and Cho MY: The small
molecule survivin inhibitor YM155 may be an effective treatment
modality for colon cancer through increasing apoptosis. Biochem
Biophys Res Commun. 471:309–314. 2016.PubMed/NCBI View Article : Google Scholar
|
72
|
Rödel F, Frey B, Leitmann W, Capalbo G,
Weiss C and Rödel C: Survivin antisense oligonucleotides
effectively radiosensitize colorectal cancer cells in both tissue
culture and murine xenograft models. Int J Radiat Oncol Biol Phys.
71:247–255. 2008.PubMed/NCBI View Article : Google Scholar
|
73
|
Chang YC, Kondapuram SK, Yang TH, Syed SB,
Cheng SM, Lin TY, Lin YC, Coumar MS, Chang JY, Leung E and Cheung
CHA: The SMAC mimetic LCL161 is a direct ABCB1/MDR1-ATPase activity
modulator and BIRC5/Survivin expression down-regulator in cancer
cells. Toxicol Appl Pharmacol. 401(115080)2020.PubMed/NCBI View Article : Google Scholar
|