1
|
Giustozzi M, Franco L, Vedovati MC,
Becattini C and Agnelli G: Safety of direct oral anticoagulants
versus traditional anticoagulants in venous thromboembolism. J
Thromb Thrombolysis. 48:439–453. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Shargall Y and Litle VR: European
perspectives in Thoracic Surgery, the ESTS venous thromboembolism
(VTE) working group. J Thorac Dis. 10 (Suppl 8):S963–S968.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Fritz MK, Kincaid SE, Sargent CG, Green AH
and Davis GA: Venous thromboembolism (VTE) risk stratification in
general medical patients at an academic medical center. J Thromb
Thrombolysis. 51:67–73. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Saleh J, El-Othmani MM and Saleh KJ: Deep
vein thrombosis and pulmonary embolism considerations in orthopedic
surgery. Orthop Clin North Am. 48:127–135. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Anderson DR, Morgano GP, Bennett C,
Dentali F, Francis CW, Garcia DA, Kahn SR, Rahman M, Rajasekhar A,
Rogers FB, et al: American Society of Hematology 2019 guidelines
for management of venous thromboembolism: prevention of venous
thromboembolism in surgical hospitalized patients. Blood Adv.
3:3898–3944. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Louis SG, Van PY, Riha GM, Barton JS,
Kunio NR, Underwood SJ, Differding JA, Rick E, Ginzburg E and
Schreiber MA: Thromboelastogram-guided enoxaparin dosing does not
confer protection from deep venous thrombosis: A randomized
controlled pilot trial. J Trauma Acute Care Surg. 76:937–42;
discussion 942-3. 2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Wang CM, Guo XF, Liu LM, Huang Y, Meng L,
Song LP, Wu YF, Ning YC, Reilly KH and Wang HB: Prevention of deep
vein thrombosis by panax notoginseng saponins combined with
low-molecular-weight heparin in surgical patients. Chin J Integr
Med. 28:771–778. 2022.PubMed/NCBI View Article : Google Scholar
|
8
|
van Rein N, Biedermann JS, van der Meer
FJM, Cannegieter SC, Wiersma N, Vermaas HW, Reitsma PH, Kruip MJHA
and Lijfering WH: Major bleeding risks of different
low-molecular-weight heparin agents: A cohort study in 12 934
patients treated for acute venous thrombosis. J Thromb Haemost.
15:1386–1391. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Hogan M and Berger JS: Heparin-induced
thrombocytopenia (HIT): Review of incidence, diagnosis, and
management. Vasc Med. 25:160–173. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang X, Wang M, Qiao Y, Shan Z, Yang M,
Li G, Xiao Y, Wei L, Bi H and Gao T: Exploring the mechanisms of
action of Cordyceps sinensis for the treatment of depression using
network pharmacology and molecular docking. Ann Transl Med.
10(282)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Dong Y, Duan L, Chen HW, Liu YM, Zhang Y
and Wang J: Network pharmacology-based prediction and verification
of the targets and mechanism for panax notoginseng saponins against
coronary heart disease. Evid Based Complement Alternat Med.
2019(6503752)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang C, Chen H, Ma ST, Mao BB, Chen Y, Xu
HN and Yu H: A Network Pharmacology Approach for Exploring the
Mechanisms of Panax notoginseng Saponins in Ischaemic Stroke. Evid
Based Complement Alternat Med. 2021(5582782)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhu B, Zhang W, Lu Y, Hu S, Gao R, Sun Z,
Chen X, Ma J, Guo S, Du S and Li P: Network pharmacology-based
identification of protective mechanism of Panax Notoginseng
Saponins on aspirin induced gastrointestinal injury. Biomed
Pharmacother. 105:159–166. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Jiang Y, Li S, Xie X, Li H, Huang P, Li B,
Huo L, Zhong J, Li Y and Xia X: Exploring the Mechanism of Panax
notoginseng Saponins against Alzheimer's Disease by Network
Pharmacology and Experimental Validation. Evid Based Complement
Alternat Med. 2021(5730812)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Yu G and Wang J: Exploring mechanisms of
Panax notoginseng saponins in treating coronary heart disease by
integrating gene interaction network and functional enrichment
analysis. Chin J Integr Med. 22:589–596. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Han S, Chen Y, Wang J, Zhang Q, Han B, Ge
Y, Xiang Y, Liang R, Zhu X and Liao F: Anti-thrombosis Effects and
Mechanisms by Xueshuantong Capsule Under Different Flow Conditions.
Front Pharmacol. 10(35)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Ru J, Li P, Wang J, Zhou W, Li B, Huang C,
Li P, Guo Z, Tao W, Yang Y, et al: TCMSP: A database of systems
pharmacology for drug discovery from herbal medicines. J
Cheminform. 6(13)2014.PubMed/NCBI View Article : Google Scholar
|
18
|
Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H,
Sun L, Hu H, Gao K, Wang W, et al: SymMap: An integrative database
of traditional Chinese medicine enhanced by symptom mapping.
Nucleic Acids Res. 47:D1110–D1117. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Boyadjiev SA and Jabs EW: Online Mendelian
Inheritance in Man (OMIM) as a knowledgebase for human
developmental disorders. Clin Genet. 57:253–266. 2000.PubMed/NCBI View Article : Google Scholar
|
20
|
Wishart DS, Feunang YD, Guo AC, Lo EJ,
Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al:
DrugBank 5.0: A major update to the DrugBank database for 2018.
Nucleic Acids Res. 46:D1074–D1082. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Safran M, Chalifa-Caspi V, Shmueli O,
Olender T, Lapidot M, Rosen N, Shmoish M, Peter Y, Glusman G,
Feldmesser E, et al: Human Gene-Centric Databases at the Weizmann
Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic
Acids Res. 31:142–146. 2003.PubMed/NCBI View Article : Google Scholar
|
22
|
Piñero J, Queralt-Rosinach N, Bravo A,
Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F and Furlong LI:
DisGeNET: A discovery platform for the dynamical exploration of
human diseases and their genes. Database (Oxford).
2015(bav028)2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar
|
24
|
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and
Lin CY: CytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol. 8 (Suppl 4)(S11)2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47:D607–D613.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhou Y, Zhou B, Pache L, Chang M,
Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK: Metascape
provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 10(1523)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Burley SK, Berman HM, Kleywegt GJ, Markley
JL, Nakamura H and Velankar S: Protein Data Bank (PDB): The single
global macromolecular structure archive. Methods Mol Biol.
1607:627–641. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Forli S, Huey R, Pique ME, Sanner MF,
Goodsell DS and Olson AJ: Computational protein-ligand docking and
virtual drug screening with the AutoDock suite. Nat Protoc.
11:905–919. 2016.PubMed/NCBI View Article : Google Scholar
|
29
|
Seeliger D and de Groot BL: Ligand docking
and binding site analysis with PyMOL and Autodock/Vina. J Comput
Aided Mol Des. 24:417–422. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Yang X, Wang L, Zeng J, Wu A, Qin M, Wen
M, Zhang T, Chen W, Mei Q, Qin D, et al: Caulis Polygoni Multiflori
Accelerates Megakaryopoiesis and Thrombopoiesis via Activating
PI3K/Akt and MEK/ERK Signaling Pathways. Pharmaceuticals (Basel).
15(1204)2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Fritz DI, Ding Y, Merrill-Skoloff G,
Flaumenhaft R, Hanada T and Chishti AH: Dematin regulates calcium
mobilization, thrombosis, and early akt activation in platelets.
Mol Cell Biol. 43:283–299. 2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Woulfe DS: Akt signaling in platelets and
thrombosis. Expert Rev Hematol. 3:81–91. 2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Yin H, Stojanovic A, Hay N and Du X: The
role of Akt in the signaling pathway of the glycoprotein Ib-IX
induced platelet activation. Blood. 111:658–665. 2008.PubMed/NCBI View Article : Google Scholar
|
34
|
Chen S, Tian CB, Bai LY, He XC, Lu QY,
Zhao YL and Luo XD: Thrombosis inhibited by Corydalis decumbens
through regulating PI3K-Akt pathway. J Ethnopharmacol.
329(118177)2024.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhang T, Li Q, Wang L and Li G: Expression
variations and clinical significance of MMP-1, MMP-2 and
inflammatory factors in serum of patients with deep venous
thrombosis of lower extremity. Exp Ther Med. 17:181–186.
2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Saha P and Smith A: TNF-α (Tumor Necrosis
Factor-α). Arterioscler Thromb Vasc Biol. 38:2542–2543.
2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Lopes-Bezerra LM and Filler SG:
Endothelial cells, tissue factor and infectious diseases. Braz J
Med Biol Res. 36:987–991. 2003.PubMed/NCBI View Article : Google Scholar
|
38
|
Nagareddy P and Smyth SS: Inflammation and
thrombosis in cardiovascular disease. Curr Opin Hematol.
20:457–463. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Christiansen SC, Naess IA, Cannegieter SC,
Hammerstrøm J, Rosendaal FR and Reitsma PH: Inflammatory cytokines
as risk factors for a first venous thrombosis: A prospective
population-based study. PLoS Med. 3(e334)2006.PubMed/NCBI View Article : Google Scholar
|
40
|
Nosaka M, Ishida Y, Kimura A, Kuninaka Y,
Taruya A, Furuta M, Mukaida N and Kondo T: Contribution of the
TNF-α (Tumor Necrosis Factor-α)-TNF-Rp55 (Tumor Necrosis Factor
Receptor p55) Axis in the Resolution of Venous Thrombus.
Arterioscler Thromb Vasc Biol. 38:2638–2650. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Pai RZ, Fang Q, Tian G, Zhu B and Ge X:
Expression and role of interleukin-1β and associated biomarkers in
deep vein thrombosis. Exp Ther Med. 22(1366)2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Fan LM, Douglas G, Bendall JK, McNeill E,
Crabtree MJ, Hale AB, Mai A, Li JM, McAteer MA, Schneider JE, et
al: Endothelial cell-specific reactive oxygen species production
increases susceptibility to aortic dissection. Circulation.
129:2661–2672. 2014.PubMed/NCBI View Article : Google Scholar
|
43
|
Kanaji N, Sato T, Nelson A, Wang X, Li Y,
Kim M, Nakanishi M, Basma H, Michalski J, Farid M, et al:
Inflammatory cytokines regulate endothelial cell survival and
tissue repair functions via NF-κB signaling. J Inflamm Res.
4:127–138. 2011.PubMed/NCBI View Article : Google Scholar
|
44
|
Zepeda-Orozco D, Wen HM, Hamilton BA,
Raikwar NS and Thomas CP: . EGF regulation of proximal tubule cell
proliferation and VEGF-A secretion. Physiol Rep.
5(e13453)2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Kaye B, Ali A, Correa Bastianon Santiago
RA, Ibrahim B, Isidor J, Awad H, Sabahi M, Obrzut M, Adada B,
Ranjan S and Borghei-Razavi H: The Role of EGFR amplification in
deep venous thrombosis occurrence in IDH Wild-Type Glioblastoma.
Curr Oncol. 30:4946–4956. 2023.PubMed/NCBI View Article : Google Scholar
|
46
|
Roopkumar J, Poudel SK, Gervaso L, Reddy
CA, Velcheti V, Pennell NA, McCrae KR and Khorana AA: Risk of
thromboembolism in patients with ALK- and EGFR-mutant lung cancer:
A cohort study. J Thromb Haemost. 19:822–829. 2021.PubMed/NCBI View Article : Google Scholar
|
47
|
Li Q, Chen Y, Zhao D, Yang S, Zhang S, Wei
Z, Wang Y, Qian K, Zhao B, Zhu Y, et al: LongShengZhi Capsule
reduces carrageenan-induced thrombosis by reducing activation of
platelets and endothelial cells. Pharmacol Res. 144:167–180.
2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Zhang Y, Liu J, Jia W, Tian X, Jiang P,
Cheng Z and Li J: AGEs/RAGE blockade downregulates Endothenin-1
(ET-1), mitigating Human Umbilical Vein Endothelial Cells (HUVEC)
injury in deep vein thrombosis (DVT). Bioengineered. 12:1360–1368.
2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Yamagishi SI: Role of advanced glycation
end products (AGEs) and receptor for AGEs (RAGE) in vascular damage
in diabetes. Exp Gerontol. 46:217–224. 2011.PubMed/NCBI View Article : Google Scholar
|
50
|
Cyr AR, Huckaby LV, Shiva SS and
Zuckerbraun BS: Nitric oxide and endothelial dysfunction. Crit Care
Clin. 36:307–321. 2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Yang S, Zheng Y and Hou X: Lipoxin A4
restores oxidative stress-induced vascular endothelial cell injury
and thrombosis-related factor expression by its receptor-mediated
activation of Nrf2-HO-1 axis. Cell Signal. 60:146–153.
2019.PubMed/NCBI View Article : Google Scholar
|
52
|
Lyu X, Yi Z, He Y, Zhang C, Zhu P and Liu
C: Astragaloside IV induces endothelial progenitor cell
angiogenesis in deep venous thrombosis through inactivation of
PI3K/AKT signaling. Histol Histopathol. 39:1149–1157.
2024.PubMed/NCBI View Article : Google Scholar
|
53
|
Chang MC, Chen YJ, Liou EJ, Tseng WY, Chan
CP, Lin HJ, Liao WC, Chang YC, Jeng PY and Jeng JH:
7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings,
cytotoxicity and IL-8 production in endothelial cells. Oncotarget.
7:74473–74483. 2016.PubMed/NCBI View Article : Google Scholar
|
54
|
Su XL, Su W, Wang Y, Wang YH, Ming X and
Kong Y: The pyrrolidinoindoline alkaloid Psm2 inhibits platelet
aggregation and thrombus formation by affecting PI3K/Akt signaling.
Acta Pharmacol Sin. 37:1208–1217. 2016.PubMed/NCBI View Article : Google Scholar
|
55
|
Guidetti GF, Canobbio I and Torti M:
PI3K/Akt in platelet integrin signaling and implications in
thrombosis. Adv Biol Regul. 59:36–52. 2015.PubMed/NCBI View Article : Google Scholar
|