1
|
Cao SM, Simons MJ and Qian CN: The
prevalence and prevention of nasopharyngeal carcinoma in China.
Chin J Cancer. 30:114–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lo KW, To KF and Huang DP: Focus on
nasopharyngeal carcinoma. Cancer Cell. 5:423–428. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang J, Guo LP, Chen LZ, Zeng YX and Lu
SH: Identification of cancer stem cell-like side population cells
in human nasopharyngeal carcinoma cell line. Cancer Res.
67:3716–3724. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Su J, Xu XH, Huang Q, Lu MQ, Li DJ, Xue F,
Yi F, Ren JH and Wu YP: Identification of cancer stem-like
CD44+ cells in human nasopharyngeal carcinoma cell line.
Arch Med Res. 42:15–21. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wong RS: Apoptosis in cancer: From
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ola MS, Nawaz M and Ahsan H: Role of Bcl-2
family proteins and caspases in the regulation of apoptosis. Mol
Cell Biochem. 351:41–58. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Martinou JC and Youle RJ: Mitochondria in
apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev
Cell. 21:92–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Peter ME and Krammer PH: The CD95
(APO-1/Fas) DISC and beyond. Cell Death Differ. 10:26–35. 2003.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cullen SP and Martin SJ: Caspase
activation pathways: Some recent progress. Cell Death Differ.
16:935–938. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao Y, Lei M, Wang Z, Qiao G, Yang T and
Zhang J: TCR-induced, PKC-θ-mediated NF-κB activation is regulated
by a caspase-8-caspase-9-caspase-3 cascade. Biochem Biophys Res
Commun. 450:526–531. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim JH, Kang M, Cho C, Chung HS, Kang CW,
Parvez S and Bae H: Effects of Nelumbinis semen on contractile
dysfunction in ischemic and reperfused rat heart. Arch Pharm Res.
29:777–785. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sohn DH, Kim YC, Oh SH, Park EJ, Li X and
Lee BH: Hepato-protective and free radical scavenging effects of
Nelumbo nucifera. Phytomedicine. 10:165–169. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rai S, Wahile A, Mukherjee K, Saha BP and
Mukherjee PK: Antioxidant activity of Nelumbo nucifera (sacred
lotus) seeds. J Ethnopharmacol. 104:322–327. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ling ZQ, Xie BJ and Yang EL: Isolation,
characterization, and determination of anti-oxidative activity of
oligomericprocyanidins from the seedpod of Nelumbo nucifera Gaertn.
J Agric Food Chem. 53:2441–2445. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu CP, Tsai WJ, Lin YL, Liao JF, Chen CF
and Kuo YC: The extracts from Nelumbo nucifera suppress cell cycle
progression, cytokine genes expression, and cell proliferation in
human peripheral blood mononuclear cells. Life Sci. 75:699–716.
2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu CP, Tsai WJ, Shen CC, Lin YL, Liao JF,
Chen CF and Kuo YC: Inhibition of (S)-armepavine from Nelumbo
nucifera on autoimmune disease of MRL/MpJ-lpr/lpr mice. Eur J
Pharmacol. 531:270–279. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu CP, Kuo YC, Shen CC, Wu MH, Liao JF,
Lin YL, Chen CF and Tsai WJ: (S)-armepavine inhibits human
peripheral blood mononuclear cell activation by regulating Itk and
PLCgamma activation in a PI-3K-dependent manner. J Leukoc Biol.
81:1276–1286. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xiao JH, Zhang YL, Feng XL, Wang JL and
Qian JQ: Effects of isoliensinine on angiotensin II-induced
proliferation of porcine coronary arterial smooth muscle cells. J
Asian Nat Pro Res. 8:209–216. 2006. View Article : Google Scholar
|
19
|
Yu J and Hu WS: Effects of neferine on
platelet aggregation in rabbits. Acta Pharm Sin. 32:1–4. 1997.(In
Chinese).
|
20
|
Lin JY, Wu AR, Liu CJ and Ying S:
Suppressive effects of lotus plumule (Nelumbo nucifera Geartn.)
supplementation on LPS-induced systemic inflammation in a BALB/c
mouse model. J Food Drug Anal. 14:273–278. 2006.
|
21
|
Mazumder UK, Gupta M, Pramanik G,
Mukhopadhyay RK and Sarkar S: Antifertility activity of seed of
Nelumbo nucifera in mice. Ind J Exp Biol. 30:533–534. 1992.
|
22
|
Li G, Li X and Lü F: Effects of neferine
on transmembrane potentials of guinea pig myocardium. Zhongguo Yao
Li Xue Bao. 10:406–410. 1989.(In Chinese). PubMed/NCBI
|
23
|
Li GR, Li XG and Lu FH: Effects of
neferine on transmembrane potential in rabbit sinoatrial nodes and
clusters of cultured myocardial cells from neonatal rats. Zhongguo
Yao Li Xue Bao. 10:328–331. 1989.(In Chinese). PubMed/NCBI
|
24
|
Li GR, Qian JQ and Lü FH: Effects of
neferine on heart electromechanical activity in anaesthetized cats.
Zhongguo Yao Li Xue Bao. 11:158–161. 1990.(In Chinese). PubMed/NCBI
|
25
|
Wang JL, Nong Y and Jiang MX: Effects of
liensinine on haemodynamics in rats and the physiologic properties
of isolated rabbit atria. Yao Xue Xue Bao. 27:881–885. 1992.(In
Chinese). PubMed/NCBI
|
26
|
Wang JL, Nong Y, Xia GJ, Yao WX and Jiang
MX: Effects of liensinine on slow action potentials in myocardium
and slow inward current in canine cardiac Purkinje fibers. Yao Xue
Xue Bao. 28:812–816. 1993.(In Chinese). PubMed/NCBI
|
27
|
Xiao JH, Zhang JH, Chen HL, Feng XL and
Wang JL: Inhibitory effect of isoliensinine on bleomycin-induced
pulmonary fibrosis in mice. Planta Med. 71:225–230. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kuo YC, Lin YL, Liu CP and Tsai WJ: Herpes
simplex virus type 1 propagation in HeLa cells interrupted by
Nelumbo nucifera. J Biomed Sci. 12:1021–1034. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lu JJ, Bao JL, Chen XP, Huang M and Wang
YT: Alkaloids isolated from natural herbs as the anticancer agents.
Evid Based Complement Alternat Med. 2012:4850422012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu CM, Kao CL, Wu HM, Li WJ, Huang CT, Li
HT and Chen CY: Antioxidant and anticancer aporphine alkaloids from
the leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules.
19:17829–17838. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
O' Reilly LA, Tai L, Lee L, Kruse EA,
Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT,
et al: Membrane-bound Fas ligand is essential for Fas-induced
apoptosis. Nature. 461:659–663. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Waring P and Müllbacher A: Cell death
induced by the Fas/Fas ligand pathway and its role in pathology.
Immunol Cell Biol. 77:312–317. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Scaffidi C, Medema JP, Krammer PH and
Peter ME: FLICE is predominantly expressed as two functionally
active isoforms, caspase-8/a and caspase-8/b. J Biol Chem.
272:26953–26958. 1997. View Article : Google Scholar : PubMed/NCBI
|
34
|
Volkmann N, Marassi FM, Newmeyer DD and
Hanein D: The rheostat in the membrane: BCL-2 family proteins and
apoptosis. Cell Death Differ. 21:206–215. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Czabotar PE, Lessene G, Strasser A and
Adams JM: Control of apoptosis by the BCL-2 protein family:
Implications for physiology and therapy. Nat Rev Mol Cell Biol.
15:49–63. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Letai A, Bassik MC, Walensky LD,
Sorcinelli MD, Weiler S and Korsmeyer SJ: Distinct BH3 domains
either sensitize or activate mitochondrial apoptosis, serving as
prototype cancer therapeutics. Cancer Cell. 2:183–192. 2002.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Finucane DM, Bossy-Wetzel E, Waterhouse
NJ, Cotter TG and Green DR: Bax-induced caspase activation and
apoptosis via cytochrome c released from mitochondria is inhibited
by Bcl-xL. J Biol Chem. 274:2225–2233. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Van Antwerp DJ, Martin SJ, Verma IM and
Green DR: Inhibition of TNF-induced apoptosis by NF-κB. Trends Cell
Biol. 8:107–111. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ohshima K, Sugihara M, Haraoka S, Suzumiya
J, Kanda M, Kawasaki C, Shimazaki K and Kikuchi M: Possible
immortalization of Hodgkin and Reed-Sternberg cells: Telomerase
expression, lengthening of telomere and inhibition of apoptosis by
NF-kappaB expression. Leuk Lymphoma. 41:367–376. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rayet B and Gélinas C: Aberrant rel/nfkb
genes and activity in human cancer. Oncogene. 18:6938–6947. 1999.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Dolcet X, Llobet D, Pallares J and
Matias-Guiu X: NF-kB in development and progression of human
cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ghosh S and Karin M: Missing pieces in the
NF-kappaB puzzle. Cell. 109:(Suppl). S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen C, Edelstein LC and Gélinas C: The
Rel/NF-kappaB family directly activates expression of the apoptosis
inhibitor Bcl-x(L). Mol Cell Biol. 20:2687–2695. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lin A and Karin M: NF-κB in cancer: A
marked target. Semin Cancer Biol. 13:107–114. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tergaonkar V, Bottero V, Ikawa M, Li Q and
Verma IM: IkappaB kinase-independent IkappaBalpha degradation
pathway: Functional NF-kappaB activity and implications for cancer
therapy. Mol Cell Biol. 23:8070–8083. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lee CH, Jeon YT, Kim SH and Song YS:
NF-kappaB as a potential molecular target for cancer therapy.
Biofactors. 29:19–35. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gilmore TD and Garbati MR: Inhibition of
NF-κB signaling as a strategy in disease therapy. Curr Top
Microbiol Immunol. 349:245–263. 2011.PubMed/NCBI
|