1
|
Surks MI, Ortiz E, Daniels GH, Sawin CT,
Col NF, Cobin RH, Franklyn JA, Hershman JM, Burman KD, Denke MA, et
al: Subclinical thyroid disease: Scientific review and guidelines
for diagnosis and management. JAMA. 291:228–238. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Quinn TJ, Gussekloo J, Kearney P, Rodondi
N and Stott DJ: Subclinical thyroid disorders. Lancet. 380:335–337.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xu L, Ma H, Miao M and Li Y: Impact of
subclinical hypothyroidism on the development of non-alcoholic
fatty liver disease: A prospective case-control study. J Hepatol.
57:1153–1154. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou L, Ding S, Li Y, Wang L, Chen W, Bo
T, Wu K, Li C, Liu X, Zhao J, et al: Endoplasmic reticulum stress
may play a pivotal role in lipid metabolic disorders in a novel
mouse model of subclinical hypothyroidism. Sci Rep. 6:313812016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Rottiers V and Näär AM: MicroRNAs in
metabolism and metabolic disorders. Nat Rev Mol Cell Biol.
13:239–250. 2012. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Baffy G: MicroRNAs in nonalcoholic fatty
liver disease. J Clin Med. 4:1977–1988. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lu Y, Wang J, Guo X, Yan S and Dai J:
Perfluorooctanoic acid affects endocytosis involving clathrin light
chain A and microRNA-133b-3p in mouse testes. Toxicol Appl
Pharmacol. 318:41–48. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen W, Zhao W, Yang A, Xu A, Wang H, Cong
M, Liu T, Wang P and You H: Integrated analysis of microRNA and
gene expression profiles reveals a functional regulatory module
associated with liver fibrosis. Gene. 636:87–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Wang L, Zhou L, Song Y, Ma S, Yu C,
Zhao J, Xu C and Gao L: Thyroid stimulating hormone increases
hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol. 446:70–80.
2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yan F, Wang Q, Lu M, Chen W, Song Y, Jing
F, Guan Y, Wang L, Lin Y, Bo T, et al: Thyrotropin increases
hepatic triglyceride content through upregulation of SREBP-1c
activity. J Hepatol. 61:1358–1364. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Calderon-Gonzalez KG, Valero Rustarazo ML,
Labra-Barrios ML, Bazán-Méndez CI, Tavera-Tapia A, Herrera-Aguirre
ME, Sánchez del Pino MM, Gallegos-Pérez JL, González-Márquez H,
Hernández-Hernández JM, et al: Determination of the protein
expression profiles of breast cancer cell lines by quantitative
proteomics using iTRAQ labelling and tandem mass spectrometry. J
Proteomics. 124:50–78. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zheng L, Lv GC, Sheng J and Yang YD:
Effect of miRNA-10b in regulating cellular steatosis level by
targeting PPAR-alpha expression, a novel mechanism for the
pathogenesis of NAFLD. J Gastroenterol Hepatol. 25:156–163. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ng R, Wu H, Xiao H, Chen X, Willenbring H,
Steer CJ and Song G: Inhibition of microRNA-24 expression in liver
prevents hepatic lipid accumulation and hyperlipidemia. Hepatology.
60:554–564. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu MX, Gao M, Li CZ, Yu CZ, Yan H, Peng
C, Li Y, Li CG, Ma ZL, Zhao Y, et al: Dicer1/miR-29/HMGCR axis
contributes to hepatic free cholesterol accumulation in mouse
non-alcoholic steatohepatitis. Acta Pharmacol Sin. 38:660–671.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang M, Li CC, Li F, Li H, Liu XJ, Loor
JJ, Kang XT and Sun GR: Estrogen promotes hepatic synthesis of
long-chain polyunsaturated fatty acids by regulating ELOVL5 at
post-transcriptional level in laying hens. Int J Mol Sci.
18:E14052017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fan J, Li H, Nie X, Yin Z, Zhao Y, Chen C
and Wen Wang D: MiR-30c-5p ameliorates hepatic steatosis in leptin
receptor-deficient (db/db) mice via down-regulating FASN.
Oncotarget. 8:13450–13463. 2017.PubMed/NCBI
|
20
|
Zhang ZC, Liu Y, Xiao LL, Li SF, Jiang JH,
Zhao Y, Qian SW, Tang QQ and Li X: Upregulation of miR-125b by
estrogen protects against non-alcoholic fatty liver in female mice.
J Hepatol. 63:1466–1475. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Y, Du J, Niu X, Fu N, Wang R, Zhang
Y, Zhao S, Sun D and Nan Y: MiR-130a-3p attenuates activation and
induces apoptosis of hepatic stellate cells in nonalcoholic
fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2.
Cell death Dis. 8:e27922017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ahn J, Lee H, Chung CH and Ha T: High fat
diet induced downregulation of microRNA-467b increased lipoprotein
lipase in hepatic steatosis. Biochem Biophys Res Commun.
414:664–669. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Miller AM, Gilchrist DS, Nijjar J, Araldi
E, Ramirez CM, Lavery CA, Fernández-Hernando C, McInnes IB and
Kurowska-Stolarska M: MiR-155 has a protective role in the
development of non-alcoholic hepatosteatosis in mice. PLoS One.
8:e723242013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Castro RE, Ferreira DM, Afonso MB,
Borralho PM, Machado MV, Cortez-Pinto H and Rodrigues CM:
miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat
liver and activated by disease severity in human non-alcoholic
fatty liver disease. J Hepatol. 58:119–125. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li B, Zhang Z, Zhang H, Quan K, Lu Y, Cai
D and Ning G: Aberrant miR199a-5p/caveolin1/PPARα axis in hepatic
steatosis. J Mol Endocrinol. 53:393–403. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang B, Wang R, Du J, Niu J, Zhang R, Xu
S, Niu X, Zhang Q and Nan Y: Upregulated microRNA-199a-5p inhibits
nuclear receptor corepressor 1 translation in mice with
nonalcoholic steatohepatitis. Mol Med Rep. 10:3080–3086. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Iliopoulos D, Drosatos K, Hiyama Y,
Goldberg IJ and Zannis VI: MicroRNA-370 controls the expression of
microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid
Res. 51:1513–1523. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu D, Zhang M, Xie W, Lan G, Cheng HP,
Gong D, Huang C, Lv YC, Yao F, Tan YL, et al: MiR-486 regulates
cholesterol efflux by targeting HAT1. Biochem Biophys Res Commun.
472:418–424. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu H, Zhang T, Pan F, Steer CJ, Li Z, Chen
X and Song G: MicroRNA-206 prevents hepatosteatosis and
hyperglycemia by facilitating insulin signaling and impairing
lipogenesis. J Hepatol. 66:816–824. 2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wagschal A, Najafi-Shoushtari SH, Wang L,
Goedeke L, Sinha S, deLemos AS, Black JC, Ramírez CM, Li Y, Tewhey
R, et al: Genome-wide identification of microRNAs regulating
cholesterol and triglyceride homeostasis. Nat Med. 21:1290–1297.
2015. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Meng X, Guo J, Fang W, Dou L, Li M, Huang
X, Zhou S, Man Y, Tang W, Yu L and Li J: Liver MicroRNA-291b-3p
promotes hepatic lipogenesis through negative regulation of
adenosine 5′-monophosphate (AMP)-activated protein kinase α1. J
Biol Chem. 291:10625–10634. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim YC, Jung H, Seok S, Zhang Y, Ma J, Li
T, Kemper B and Kemper JK: MicroRNA-210 promotes bile acid-induced
cholestatic liver injury by targeting mixed-lineage leukemia-4
methyltransferase in mice. Hepatology. Sep 24–2019.(Epub ahead of
print). View Article : Google Scholar
|
33
|
Wanjia X, Chenggang W, Aihong W, Xiaomei
Y, Jiajun Z, Chunxiao Y, Jin X, Yinglong H and Ling G: A high
normal TSH level is associated with an atherogenic lipid profile in
euthyroid non-smokers with newly diagnosed asymptomatic coronary
heart disease. Lipids Health Dis. 11:442012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma S, Jing F, Xu C, Zhou L, Song Y, Yu C,
Jiang D, Gao L, Li Y, Guan Q and Zhao J: Thyrotropin and obesity:
Increased adipose triglyceride content through glycerol-3-phosphate
acyltransferase 3. Sci Rep. 5:76332015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Louten J, Beach M, Palermino K, Weeks M
and Holenstein G: MicroRNAs expressed during viral infection:
Biomarker potential and therapeutic considerations. Biomarker
Insights. 10 (Suppl 4):S25–S52. 2015.
|
36
|
Barabasi AL, Gulbahce N and Loscalzo J:
Network medicine: A network-based approach to human disease. Nat
Rev Genet. 12:56–68. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Peterson SM, Thompson JA, Ufkin ML,
Sathyanarayana P, Liaw L and Congdon CB: Common features of
microRNA target prediction tools. Front Genet. 5:232014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lu J and Holmgren A: The thioredoxin
antioxidant system. Free Radic Biol Med. 66:75–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang J, Hamid S, Cai J, Liu Q, Xu S and
Zhang Z: Selenium deficiency-induced thioredoxin suppression and
thioredoxin knock down disbalanced insulin responsiveness in
chicken cardiomyocytes through PI3K/Akt pathway inhibition. Cell
Signal. 38:192–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Haribabu A, Reddy VS, Pallavi CH, Bitla
AR, Sachan A, Pullaiah P, Suresh V, Rao PV and Suchitra MM:
Evaluation of protein oxidation and its association with lipid
peroxidation and thyrotropin levels in overt and subclinical
hypothyroidism. Endocrine. 44:152–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sasikumar AN, Perez WB and Kinzy TG: The
many roles of the eukaryotic elongation factor 1 complex. Wiley
Interdiscip Rev RNA. 3:543–555. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Seki S, Kitada T, Yamada T, Sakaguchi H,
Nakatani K and Wakasa K: In situ detection of lipid peroxidation
and oxidative DNA damage in non-alcoholic fatty liver diseases. J
Hepatol. 37:56–62. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zimmermann MB and Kohrle J: The impact of
iron and selenium deficiencies on iodine and thyroid metabolism:
Biochemistry and relevance to public health. Thyroid. 12:867–878.
2002. View Article : Google Scholar : PubMed/NCBI
|