1
|
Liu M, Song Y and Han Z: Study on the
effect of lncRNA AK094457 on OX-LDL induced vascular smooth muscle
cells. Am J Transl Res. 11:5623–5633. 2019.PubMed/NCBI
|
2
|
Bennett MR, Sinha S and Owens GK: Vascular
smooth muscle cells in atherosclerosis. Circ Res. 118:692–702.
2016.PubMed/NCBI View Article : Google Scholar
|
3
|
Wang J, Uryga AK, Reinhold J, Figg N,
Baker L, Finigan A, Gray K, Kumar S, Clarke M and Bennett M:
Vascular smooth muscle cell senescence promotes atherosclerosis and
features of plaque vulnerability. Circulation. 132:1909–1919.
2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Misra A, Feng Z, Chandran RR, Kabir I,
Rotllan N, Aryal B, Sheikh AQ, Ding L, Qin L, Fernández-Hernando C,
et al: Integrin beta3 regulates clonality and fate of smooth
muscle-derived atherosclerotic plaque cells. Nat Commun.
9(2073)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Hu D, Yin C, Luo S, Habenicht AJR and
Mohanta SK: Vascular smooth muscle cells contribute to
atherosclerosis immunity. Front Immunol. 10(1101)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Xu L, Hao H, Hao Y, Wei G, Li G, Ma P,
Ding N, Ma S, Chen AF and Jiang Y: Aberrant MFN2 transcription
facilitates homocysteine-induced VSMCs proliferation via the
increased binding of c-Myc to DNMT1 in atherosclerosis. J Cell Mol
Med. 23:4611–4626. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Harman JL and Jørgensen HF: The role of
smooth muscle cells in plaque stability: Therapeutic targeting
potential. Br J Pharmacol. 176:3741–3753. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Kattoor AJ, Kanuri SH and Mehta JL: Role
of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem. 26:1693–1700.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Huang M, Zhong Z, Lv M, Shu J, Tian Q and
Chen J: Comprehensive analysis of differentially expressed profiles
of lncRNAs and circRNAs with associated co-expression and ceRNA
networks in bladder carcinoma. Oncotarget. 7:47186–47200.
2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Huang X, Zhi X, Gao Y, Ta N, Jiang h and
Zheng J: lncRNAs in pancreatic cancer. Oncotarget. 7:57379–57390.
2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Mathy NW and Chen XM: Long non-coding RNAs
(lncRNAs) and their transcriptional control of inflammatory
responses. J Biol Chem. 292:12375–12382. 2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang CH, Shi HH, Chen LH, Li XL, Cao GL
and Hu XF: Identification of key lncRNAs associated with
atherosclerosis progression based on public datasets. Front Genet.
10(123)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Chen L, Yao H, Hui JY, Ding SH, Fan YL,
Pan YH, Chen KH, Wan JQ and Jiang JY: Global transcriptomic study
of atherosclerosis development in rats. Gene. 592:43–48.
2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C,
Shao Y, Li M, Li C, Lu Y, et al: lncRNA ZFAS1 as a SERCA2a
inhibitor to cause intracellular Ca2+ overload and
contractile dysfunction in a mouse model of myocardial infarction.
Circ Res. 122:1354–1368. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang X, Jin Q, Chen W and Cai Z: lncRNA
ZFAS1 promotes proliferation and migration and inhibits apoptosis
in nasopharyngeal carcinoma via the PI3K/AKT pathway in vitro.
Cancer Biomark. 26:171–182. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Meng Q, Zhang R, Ding W and Mao B: Long
noncoding RNA ZFAS1 promotes cell proliferation and tumor growth by
upregulating LIN28 in cervical carcinoma. Minerva Med. 111:511–514.
2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Xie S, Ge Q, Wang X, Sun X and Kang Y:
Long non-coding RNA ZFAS1 sponges miR-484 to promote cell
proliferation and invasion in colorectal cancer. Cell Cycle.
17:154–161. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Ye D, Jian W, Feng J and Liao X: Role of
long noncoding RNA ZFAS1 in proliferation, apoptosis and migration
of chondrocytes in osteoarthritis. Biomed Pharmacother.
104:825–831. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Spartalis M, Spartalis E, Athanasiou A,
Paschou SA, Kontogiannis C, Georgiopoulos G, Iliopoulos DC and
Voudris V: The role of the endothelium in premature
atherosclerosis: Molecular mechanisms. Curr Med Chem. 27:1041–1051.
2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhao XS, Zheng B, Wen Y, Sun Y, Wen JK and
Zhang XH: Salvianolic acid B inhibits Ang II-induced VSMC
proliferation in vitro and intimal hyperplasia in vivo by
downregulating miR-146a expression. Phytomedicine.
58(152754)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Guo FX, Wu Q, Li P, Zheng L, Ye S, Dai XY,
Kang CM, Lu JB, Xu BM, Xu YJ, et al: The role of the
lncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of
autophagy flux and inflammation through mTOR-dependent signaling.
Cell Death Differ. 26:1670–1687. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Li FP, Lin DQ and Gao LY: lncRNA TUG1
promotes proliferation of vascular smooth muscle cell and
atherosclerosis through regulating miRNA-21/PTEN axis. Eur Rev Med
Pharmacol Sci. 22:7439–7447. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Ye ZM, Yang S, Xia YP, Hu RT, Chen S, Li
BW, Chen SL, Luo XY, Mao L, Li Y, et al: lncRNA MIAT sponges
miR-149-5p to inhibit efferocytosis in advanced atherosclerosis
through CD47 upregulation. Cell Death Dis. 10(138)2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Tang X, Yin R, Shi H, Wang X, Shen D and
Pan C: lncRNA ZFAS1 confers inflammatory responses and reduces
cholesterol efflux in atherosclerosis through regulating
miR-654-3p-ADAM10/RAB22A axis. Int J Cardiol. 315:72–80.
2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Han S, Li DZ and Xiao MF: lncRNA ZFAS1
serves as a prognostic biomarker to predict the survival of
patients with ovarian cancer. Exp Ther Med. 18:4673–4681.
2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Li X, Luo Y, Liu L, Cui S, Chen W, Zeng A,
Shi Y and Luo L: The long noncoding RNA ZFAS1 promotes the
progression of glioma by regulating the miR-150-5p/PLP2 axis. J
Cell Physiol. 235:2937–2946. 2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Zeng Z, Zhao G, Rao C, Hua G, Yang M, Miao
X, Ying J and Nie L: Knockdown of lncRNA ZFAS1-suppressed non-small
cell lung cancer progression via targeting the miR-150-5p/HMGA2
signaling. J Cell Biochem: Nov 6, 2019 (Epub ahead of print). doi:
10.1002/jcb.29542.
|
29
|
Ben-Izhak O, Bar-Chana M, Sussman L,
Dobiner V, Sandbank J, Cagnano M, Cohen h and Sabo E: Ki67 antigen
and PCNA proliferation markers predict survival in anorectal
malignant melanoma. Histopathology. 41:519–525. 2002.PubMed/NCBI View Article : Google Scholar
|
30
|
Li N, Deng W, Ma J, Wei B, Guo K, Shen W,
Zhang Y and Luo S: Prognostic evaluation of Nanog, Oct4, Sox2,
PCNA, Ki67 and E-cadherin expression in gastric cancer. Med Oncol.
32(433)2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Farina P, Tabouret E, Lehmann P, Barrie M,
Petrirena G, Campello C, Boucard C, Graillon T, Girard N and Chinot
O: Relationship between magnetic resonance imaging characteristics
and plasmatic levels of MMP2 and MMP9 in patients with recurrent
high-grade gliomas treated by Bevacizumab and Irinotecan. J
Neurooncol. 132:433–437. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Struckmann K, Mertz K, Steu S, Storz M,
Staller P, Krek W, Schraml P and Moch H: pVHL co-ordinately
regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell
renal cell carcinoma. J Pathol. 214:464–471. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Gomez D and Owens GK: Smooth muscle cell
phenotypic switching in atherosclerosis. Cardiovasc Res.
95:156–164. 2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Wei M, Liu Y, Zheng M, Wang L, Ma F, Qi Y
and Liu G: Upregulation of protease-activated receptor 2 promotes
proliferation and migration of human vascular smooth muscle cells
(VSMCs). Med Sci Monit. 25:8854–8862. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Luo Z, Deng H, Fang Z, Zeng A, Chen Y,
Zhang W and Lu Q: Ligustilide inhibited rat vascular smooth muscle
cells migration via c-Myc/MMP2 and ROCK/JNK signaling pathway. J
Food Sci. 84:3573–3583. 2019.PubMed/NCBI View Article : Google Scholar
|