1
|
Sharp VJ, Kieran K and Arlen AM:
Testicular torsion: Diagnosis, evaluation, and management. American
Family Physician. 88:835–840. 2013.PubMed/NCBI
|
2
|
Selbst SM, Friedman MJ and Singh SB:
Epidemiology and etiology of malpractice lawsuits involving
children in US emergency departments and urgent care centers.
Pediatr Emerg Care. 21:165–169. 2005.PubMed/NCBI
|
3
|
Bo X, Wang P, Nie Y, Li R, Lu J and Wang
H: Protective effect of hypothermia and vitamin E on spermatogenic
function after reduction of testicular torsion in rats. Exp Ther
Med. 20:796–801. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Ringdahl E and Teague L: Testicular
torsion. Am Fam Physician. 74:1739–1743. 2006.PubMed/NCBI
|
5
|
Pogorelić Z, Mustapić K, Jukić M, Todorić
J, Mrklić I, Mešštrović J, Jurić I and Furlan D: Management of
acute scrotum in children: A 25-year single center experience on
558 pediatric patients. Can J Urol. 23:8594–8601. 2016.PubMed/NCBI
|
6
|
Celik E, Oguzturk H, Sahin N, Turtay MG,
Oguz F and Ciftci O: Protective effects of hesperidin in
experimental testicular ischemia/reperfusion injury in rats. Arch
Med Sci. 12:928–934. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Minutoli L, Antonuccio P, Polito F, Bitto
A, Fiumara T, Squadrito F, Nicotina PA, Arena S, Marini H, Romeo C
and Altavilla D: Involvement of mitogen-activated protein kinases
(MAPKs) during testicular ischemia-reperfusion injury in nuclear
factor-kappaB knock-out mice. Life Sci. 81:413–242. 2007.PubMed/NCBI View Article : Google Scholar
|
8
|
Akbas H, Ozden M, Kanko M, Maral H, Bulbul
S, Yavuz S, Ozker E and Berki T: Protective antioxidant effects of
carvedilol in a rat model of ischaemia-reperfusion injury. J Int
Med Res. 33:528–536. 2005.PubMed/NCBI View Article : Google Scholar
|
9
|
Unsal A, Eroglu M, Avci A, Cimentepe E,
Guven C, Derya Balbay M and Durak I: Protective role of natural
antioxidant supplementation on testicular tissue after testicular
torsion and detorsion. Scand J Urol Nephrol. 40:17–22.
2006.PubMed/NCBI View Article : Google Scholar
|
10
|
Chi KK, Zhang WH, Wang GC, Chen Z, He W,
Wang SG, Cui Y, Lu P, Wang XJ and Chen H: Comparison of
intraperitoneal and intraepididymal quercetin for the prevention of
testicular torsion/detorsion-induced injury. Urology. 99:106–111.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Filho DW, Torres MA, Bordin AL,
Crezcynski-Pasa TB and Boveris A: Spermatic cord torsion, reactive
oxygen and nitrogen species and ischemia-reperfusion injury. Mol
Aspects Med. 25:199–210. 2004.PubMed/NCBI View Article : Google Scholar
|
12
|
Nicoud IB, Knox CD, Jones CM, Anderson CD,
Pierce JM, Belous AE, Earl TM and Chari RS: 2-APB protects against
liver ischemia-reperfusion injury by reducing cellular and
mitochondrial calcium uptake. Am J Physiol Gastrointest Liver
Physiol. 293:G623–G30. 2007.PubMed/NCBI View Article : Google Scholar
|
13
|
Vercesi AE, Castilho RF, Kowaltowski AJ,
de Oliveira HCF, de Souza-Pinto NC, Figueira TR and Busanello ENB:
Mitochondrial calcium transport and the redox nature of the
calcium-induced membrane permeability transition. Free Radic Biol
Med. 29:1–24. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Gaschler MM and Stockwell B: Lipid
peroxidation in cell death. Biochem Biophys Res Commun.
482:419–425. 2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Turner TT and Lysiak JJ: Oxidative stress:
A common factor in testicular dysfunction. J Androl. 29:488–498.
2008.PubMed/NCBI View Article : Google Scholar
|
16
|
Chan WC and Nie S: Quantum dot
bioconjugates for ultra sensitive nonisotopic detection. Science.
281:2016–2018. 1998.PubMed/NCBI View Article : Google Scholar
|
17
|
Vaseashta A and Dimova-Malinovska D:
Nanostructured and nanoscale devices, sensors and detectors. Sci
Technol Adv Mater. 6(312)2005.
|
18
|
Langer R: Drugs on target. Science.
293:58–59. 2001.PubMed/NCBI View Article : Google Scholar
|
19
|
Roy K, Mao HQ, Huang SK and Leong KW: Oral
gene delivery with chitosan-DNA nanoparticles generates immunologic
protection in a murine model of peanut allergy. Nat Med.
5(387)1999.PubMed/NCBI View
Article : Google Scholar
|
20
|
Sachlos E, Gotora D and Czernuszka JT:
Collagen scaffolds reinforced with biomimetic composite nano-sized
carbonate-substituted hydroxyapatite crystals and shaped by rapid
prototyping to contain internal microchannels. Tissue Eng.
12:2479–2487. 2006.PubMed/NCBI View Article : Google Scholar
|
21
|
Farokhzad OC, Cheng J, Teply BA, Sherifi
I, Jon S, Kantoff PW, Richie JP and Langer R: Targeted
nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.
Proc Natl Acad Sci USA. 103(6315)2006.PubMed/NCBI View Article : Google Scholar
|
22
|
Kim J, Kim HY, Song SY, Go SH, Sohn HS,
Baik S, Soh M, Kim K, Kim D, Kim HC, et al: Synergistic oxygen
generation and reactive oxygen species scavenging by manganese
ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis
treatment. ACS Nano. 13:3206–3217. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Celardo I, De Nicola M, Mandoli C,
Pedersen JZ, Traversa E and Ghibelli L: Ce3+ Ions
determine redox-dependent anti-apoptotic effect of cerium oxide
nanoparticles. ACS Nano. 5:4537–4549. 2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Heckert EG, Karakoti AS, Seal S and Self
WT: The role of cerium redox state in the SOD mimetic activity of
nanoceria. Biomaterials. 29:2705–2709. 2008.PubMed/NCBI View Article : Google Scholar
|
25
|
Moridi H, Hosseini SA, Shateri H,
Kheiripour N, Kaki A, Hatami M and Ranjbar A: Protective effect of
cerium oxide nanoparticle on sperm quality and oxidative damage in
malathion-induced testicular toxicity in rats: An experimental
study. Int J Reprod Biomed. 16:261–266. 2018.PubMed/NCBI
|
26
|
Shcherbakov AB, Reukov VV, Yakimansky AV,
Krasnopeeva EL, Ivanova OS, Popov AL and Ivanov VK: CeO2
nanoparticle-containing polymers for biomedical applications: A
review. Polymers (Basel). 13(924)2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Singh S, Kumar U, Gittess D, Sakthivel TS,
Babu B and Seal S: Cerium oxide nanomaterial with dual
antioxidative scavenging potential: Synthesis and characterization.
J Biomater Appl. 36:834–842. 2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Cosentino MJ, Nishida M, Rabinowitz R and
Cockett AT: Histopathology of prepubertal rat testes subjected to
various durations of spermatic cord torsion. J Androl. 7:23–31.
1986.PubMed/NCBI View Article : Google Scholar
|
29
|
Johnsen SG: Testicular biopsy score
count-a method for registration of spermatogenesis in human testes:
Normal values and results in 335 hypogonadal males. Hormones.
1:2–25. 1970.PubMed/NCBI View Article : Google Scholar
|
30
|
Crowe AR and Yue W: Semi-quantitative
determination of protein expression using immunohistochemistry
staining and analysis: An integrated protocol. Bio Protoc.
9(e3465)2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Van Ye TM, Roza AM, Pieper GM, Henderson J
Jr, Johnson CP and Adams MB: Inhibition of intestinal lipid
peroxidation does not minimize morphologic damage. J Surg Res.
55:553–558. 1993.PubMed/NCBI View Article : Google Scholar
|
32
|
Hodges DM, DeLong JM, Forney CF and Prange
RK: Improving the thiobarbituric acid reactive substances assay for
estimating lipid peroxidation in plant tissues containing
anthocyanin and other interfering compounds. Planta. 207:604–611.
1999.PubMed/NCBI View Article : Google Scholar
|
33
|
Aebi H: Catalase. In: H.U.Bergmeyer (Ed):
Methods of Enzymatic Analysis, Academic Press, New York and London,
pp673-677, 1974.
|
34
|
Brites FD, Verona J, Schreier LE, Fruchart
JC, Castro GR and Wikinski RL: Paraoxonase 1 and
platelet-activating factor acetylhydrolase activities in patients
with low hdl-cholesterol levels with or without primary
hypertriglyceridemia. Arch Med Res. 35:235–240. 2004.PubMed/NCBI View Article : Google Scholar
|
35
|
Habig WH, Pabst MJ and Jakoby WB:
Glutathione S-transferases. The first enzymatic step in mercapturic
acid formation. J Biol Chem. 249:7130–7139. 1974.PubMed/NCBI
|
36
|
Bodur A, Alver A, Kahraman C, Altay DU and
İnce İ: Investigation of N-acetylcysteine on contralateral testis
tissue injury by experimental testicular torsion: Long-term effect.
Am J Emerg Med. 34:1069–1074. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Mallick IH, Yang W, Winslet MC and
Seifalian AM: Ischemia-reperfusion injury of the intestine and
protective strategies against injury. Dig Dis Sci. 49:1359–1377.
2004.PubMed/NCBI View Article : Google Scholar
|
38
|
Ustün H, Akgül KT, Ayyildiz A, Yağmurdur
H, Nuhoğlu B, Karagüzel E, Oğüş E and Germiyanoğlu C: Effect of
phospodiesterase 5 inhibitors on apoptosis and nitric oxide
synthases in testis torsion: An experimental study. Pediatr Surg
Int. 24:205–211. 2008.PubMed/NCBI View Article : Google Scholar
|
39
|
Kazez A, Demirbağ M, Ustündağ B, Ozercan
IH and Sağlam M: The role of melatonin in prevention of intestinal
ischemia-reperfusion injury in rats. J Pediatr Surg. 35:1444–1448.
2000.PubMed/NCBI View Article : Google Scholar
|
40
|
Ates B, Yilmaz I, Geckil H, Iraz M,
Birincioglu M and Fiskin K: Protective role of melatonin given
either before ischemia or prior to reperfusion on intestinal
ischemia-reperfusion damage. J Pineal Res. 37:149–152.
2004.PubMed/NCBI View Article : Google Scholar
|
41
|
Elahi MM, Kong YX and Matata BM: Oxidative
stress as a mediator of cardiovascular disease. Oxid Med Cell
Longev. 2:259–269. 2009.PubMed/NCBI View Article : Google Scholar
|
42
|
McCord JM: Oxygen-derived free radicals in
postischemic tissue injury. N Engl J Med. 312:159–163.
1985.PubMed/NCBI View Article : Google Scholar
|
43
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong
X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid
peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med
Cell Longev. 2019(5080843)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Kasahara E, Sato EF, Miyoshi M, Konaka R,
Hiramoto K, Sasaki J, Tokuda M, Nakano Y and Inoue M: Role of
oxidative stress in germ cell apoptosis induced by
di(2-ethylhexyl)phthalate. Biochem J. 365:849–56. 2002.PubMed/NCBI View Article : Google Scholar
|
45
|
Lin WW, Lamb DJ, Wheeler TM, Abrams J,
Lipshultz LI and Kim ED: Apoptotic frequency is increased in
spermatogenic maturation arrest and hypospermatogenic states. J
Urol. 158:1791–1793. 1997.PubMed/NCBI View Article : Google Scholar
|
46
|
Shin JH, Mori C and Shiota K: Involvement
of germ cell apoptosis in the induction of testicular toxicity
following hydroxyurea treatment. Toxicol Appl Pharmacol.
155:139–149. 1999.PubMed/NCBI View Article : Google Scholar
|
47
|
Tesarik J, Greco E, Cohen-Bacrie P and
Mendoza C: Germ cell apoptosis in men with complete and incomplete
spermiogenesis failure. Mol Hum Reprod. 4:757–762. 1998.PubMed/NCBI View Article : Google Scholar
|
48
|
Payabvash S, Salmasi AH, Kiumehr S,
Tavangar SM, Nourbakhsh B, Faghihi SH and Dehpour AR: Salutary
effects of N-acetylcysteine on apoptotic damage in a rat model of
testicular torsion. Urol Int. 79:248–254. 2007.PubMed/NCBI View Article : Google Scholar
|
49
|
Suwalsky M, Villena F and Gallardo MJ: In
vitro protective effects of resveratrol against oxidative damage in
human erythrocytes. Biochim Biophys Acta. 1848:76–82.
2015.PubMed/NCBI View Article : Google Scholar
|
50
|
Espino J, Bejarano I, Ortiz A, Lozano GM,
García JF, Pariente JA and Rodríguez AB: Melatonin as a potential
tool against oxidative damage and apoptosis in ejaculated human
spermatozoa. Fertil Steril. 94:1915–1957. 2010.PubMed/NCBI View Article : Google Scholar
|
51
|
Ranjbar A, Firozian F, Soleimani Asl S,
Ghasemi H, Taheri Azandariani M, Larki A, Hosseini A and Naserabadi
A: Nitrosative DNA damage after sub-chronic exposure to silver
nanoparticle induces stress nephrotoxicity in rat kidney. Toxin
Rev. 37:327–333. 2017.
|
52
|
Saleh H, Nassar AMK, Noreldin AE, Samak D,
Elshony N, Wasef L, Elewa YHA, Hassan SMA, Saati AA, Hetta HF, et
al: Chemo-protective potential of cerium oxide nanoparticles
against fipronil-induced oxidative stress, apoptosis, inflammation
and reproductive dysfunction in male white albino rats. Molecules.
25(3479)2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Tuncay A, Sivgin V, Ozdemirkan A, Sezen
SC, Boyunaga H, Kucuk A, Gunes I and Arslan M: The effect of cerium
oxide on lung tissue in lower extremity ischemia reperfusion injury
in sevoflurane administered rats. Int J Nanomedicine. 15:7481–7489.
2020.PubMed/NCBI View Article : Google Scholar
|
54
|
Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT,
Barnhart TE, Ferreira CA, Wang Y, Yao H, Sun T, et al: Ceria
nanoparticles meet hepatic Ischemia-reperfusion injury: The perfect
imperfection. Adv Mater. 31(e1902956)2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Artimani T, Amiri I, Soleimani Asl S,
Saidijam M, Hasanvand D and Afshar S: Amelioration of
diabetes-induced testicular and sperm damage in rats by cerium
oxide nanoparticle treatment. Andrologia. 50(e13089)2018.PubMed/NCBI View Article : Google Scholar
|
56
|
Charbgoo F, Ahmad MB and Darroudi M:
Cerium oxide nanoparticles: Green synthesis and biological
applications. Int J Nanomedicine. 12:1401–1413. 2017.PubMed/NCBI View Article : Google Scholar
|
57
|
Adebayo OA, Akinloye O and Adaramoye OA:
Cerium oxide nanoparticle elicits oxidative stress, endocrine
imbalance and lowers sperm characteristics in testes of balb/c
mice. Andrologia. 50:2018.PubMed/NCBI View Article : Google Scholar : doi:
10.1111/and.12920.
|
58
|
Alpaslan E, Geilich BM, Yazici H and
Webster TJ: pH-Controlled cerium oxide nanoparticle inhibition of
both gram-positive and gram-negative bacteria growth. Sci Rep.
7(45859)2017.PubMed/NCBI View Article : Google Scholar
|
59
|
Kalyanaraman V, Naveen SV, Mohana N,
Balaje RM, Navaneethakrishnan KR, Brabu B, Murugan SS and Kumaravel
TS: Biocompatibility studies on cerium oxide nanoparticles-combined
study for local effects, systemic toxicity and genotoxicity via
implantation route. Toxicol Res (Camb). 8:25–37. 2019.PubMed/NCBI View Article : Google Scholar
|
60
|
Karakoti AS, Singh S, Kumar A, Malinska M,
Kuchibhatla SV, Wozniak K, Self WT and Seal S: PEGylated nanoceria
as radical scavenger with tunable redox chemistry. J Am Chem Soc.
131:14144–14145. 2009.PubMed/NCBI View Article : Google Scholar
|
61
|
Yang X, Pan H, Wang P and Zhao FJ:
Particle-specific toxicity and bioavailability of cerium oxide
(CeO2) nanoparticles to Arabidopsis thaliana. J Hazard
Mater. 322:292–300. 2017.PubMed/NCBI View Article : Google Scholar
|
62
|
Ganji M, Osman H, Karimi J, Hosseini SA,
Moridi H, Hosseini A, Ahmadimoghaddam D and Ranjbar A: Experimental
study of cerium oxide nanoparticles (CeNP) against malathion
induced lung oxidative toxic stress in rats. Iranian J Pharmacol
Ther. 15:1–7. 2017.
|
63
|
Tatar T, Polat Y, Comu FM, Kartal H,
Arslan M and Kucuk A: Effect of cerium oxide on erythrocyte
deformability in rat lower extremity ischemia reperfusion injury.
Bratisl Lek Listy. 119:441–443. 2018.PubMed/NCBI View Article : Google Scholar
|
64
|
Hegazy MA, Maklad HM, Samy DM, Abdelmonsif
DA, El Sabaa BM and Elnozahy FY: Cerium oxide nanoparticles could
ameliorate behavioral and neurochemical impairments in
6-hydroxydopamine induced Parkinson's disease in rats. Neurochem
Int. 108:361–371. 2017.PubMed/NCBI View Article : Google Scholar
|
65
|
Manne NDPK, Arvapalli R, Graffeo VA,
Bandarupalli VVK, Shokuhfar T, Patel S, Rice KM, Ginjupalli GK and
Blough ER: Prophylactic treatment with cerium oxide nanoparticles
attenuate hepatic ischemia reperfusion injury in sprague dawley
rats. Cell Physiol Biochem. 42:1837–1846. 2017.PubMed/NCBI View Article : Google Scholar
|
66
|
Ozbal S, Ergur BU, Erbil G, Tekmen I,
Bagrıyanık A and Cavdar Z: The effects of α-lipoic acid against
testicular ischemia-reperfusion injury in Rats.
ScientificWorldJournal. 2012(489248)2012.PubMed/NCBI View Article : Google Scholar
|
67
|
Işlekel S, Işlekel H, Güner G and Ozdamar
N: Alterations in superoxide dismutase, glutathione peroxidase and
catalase activities in experimental cerebral ischemia-reperfusion.
Res Exp Med (Berl). 199:167–176. 1999.PubMed/NCBI View Article : Google Scholar
|
68
|
Stanimirovic DB, Micic DV, Markovic M,
Spatz M and Mrsulja BB: ‘Therapeutic window’ for multiple drug
treatment of experimental cerebral ischemia in gerbils. Neurochem
Res. 19:189–194. 1994.PubMed/NCBI View Article : Google Scholar
|
69
|
Koltuksuz U, Ozen S, Uz E, Aydinç M,
Karaman A, Gültek A, Akyol O, Gürsoy MH and Aydin E: Caffeic acid
phenethyl ester prevents intestinal reperfusion injury in rats. J
Pediatr Surg. 34:1458–1462. 1999.PubMed/NCBI View Article : Google Scholar
|
70
|
Yildiz Y, Serter M, Ek RO, Ergin K, Cecen
S, Demir EM and Yenisey C: Protective effects of caffeic acid
phenethyl ester on intestinal ischemia-reperfusion injury. Dig Dis
Sci. 54:738–744. 2009.PubMed/NCBI View Article : Google Scholar
|
71
|
Erdemir F, Parlaktas BS, Ozyurt H, Boztepe
O, Atis O and Sahin S: Antioxidant effect of melatonin in systemic
circulation of rats after unilateral testicular torsion. Turk J Med
Sci. 38:1–6. 2008.
|
72
|
Wei SM, Yan ZZ and Zhou J: Protective
effect of rutin on testicular ischemia-reperfusion injury. J
Pediatr Surg. 46:1419–1424. 2011.PubMed/NCBI View Article : Google Scholar
|
73
|
Akgür FM, Kilinç K and Aktuğ T:
Reperfusion injury after detorsion of unilateral testicular
torsion. Urol Res. 21:395–399. 1993.PubMed/NCBI View Article : Google Scholar
|
74
|
Gökçe A, Oktar S, Koc A, Gonenci R,
Yalcinkaya F, Yonden Z and Duru M: Protective effect of
thymoquinone in experimental testicular torsion. Urol Int.
85:461–465. 2010.PubMed/NCBI View Article : Google Scholar
|
75
|
Blank ML, O'Neill PJ, Steigman CK, Cobb
LM, Wilde RA, Havenstein PJ and Chaudry IH: Reperfusion injury
following testicular torsion and detorsion in prepubertal rats.
Urol Res. 21:389–393. 1993.PubMed/NCBI View Article : Google Scholar
|
76
|
Prillaman HM and Turner TT: Rescue of
testicular function after acute experimental torsion. J Urol.
157:340–345. 1997.PubMed/NCBI
|
77
|
Ward TH, Cummings J, Dean E, Greystoke A,
Hou JM, Backen A, Ranson M and Dive C: Biomarkers of apoptosis. Br
J Cancer. 99:841–846. 2008.PubMed/NCBI View Article : Google Scholar
|
78
|
Porter AG and Jänicke RU: Emerging roles
of caspase-3 in apoptosis. Cell Death Differ. 6:99–104.
1999.PubMed/NCBI View Article : Google Scholar
|
79
|
Ishizuya-Oka A, Hasebe T and Shi YB:
Apoptosis in amphibian organs during metamorphosis. Apoptosis.
15:350–364. 2010.PubMed/NCBI View Article : Google Scholar
|
80
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007.PubMed/NCBI View Article : Google Scholar
|
81
|
Goldar S, Khaniani MS, Derakhshan SM and
Baradaran B: Molecular mechanisms of apoptosis and roles in cancer
development and treatment. Asian Pac J Cancer Prev. 16:2129–2144.
2015.PubMed/NCBI View Article : Google Scholar
|
82
|
Bejarano I, Rodríguez AB and Pariente JA:
Apoptosis is a demanding selective tool during the development of
fetal male germ cells. Front Cell Dev Biol. 6(65)2018.PubMed/NCBI View Article : Google Scholar
|
83
|
Jairajpuri ZS, Ghai R, Saluja S, Kapur S
and Bhowmik KT: Expression of apoptosis related and proliferative
proteins in malignant lympho-proliferative disorders. Iran J
Pathol. 12:231–240. 2007.PubMed/NCBI
|
84
|
Shi Y, Norberg E and
Vakifahmetoglu-Norberg H: Mutant p53 as a regulator and target of
autophagy. Front Oncol. 10(607149)2021.PubMed/NCBI View Article : Google Scholar
|
85
|
Scorrano L and Korsmeyer SJ: Mechanisms of
cytochrome c release by proapoptotic BCL-2 family members. Biochem
Biophys Res Commun. 304:437–444. 2003.PubMed/NCBI View Article : Google Scholar
|
86
|
Chen X, Ko LJ, Jayaraman L and Prives C:
p53 levels, functional domains, and DNA damage determine the extent
of the apoptotic response of tumor cells. Genes Dev. 10:2438–2451.
1996.PubMed/NCBI View Article : Google Scholar
|
87
|
Misao J, Hayakawa Y, Ohno M, Kato S,
Fujiwara T and Fujiwara H: Expression of bcl-2 protein, an
inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in
ventricular myocytes of human hearts with myocardial infarction.
Circulation. 94:1506–1512. 1996.PubMed/NCBI View Article : Google Scholar
|
88
|
Chipuk JE, Kuwana T, Bouchier-Hayes L,
Droin NM, Newmeyer DD, Schuler M and Green DR: Direct activation of
Bax by p53 mediates mitochondrial membrane permeabilization and
apoptosis. Science. 303:1010–1014. 2004.PubMed/NCBI View Article : Google Scholar
|
89
|
Kumi-Diaka J and Butler A: Caspase-3
protease activation during the process of genistein-induced
apoptosis in TM4 testicular cells. Biol Cell.
92:115–124. 2000.PubMed/NCBI View Article : Google Scholar
|
90
|
Kolli MB, Manne NDPK, Para R, Nalabotu SK,
Nandyala G, Shokuhfar T, He K, Hamlekhan A, Ma JY, Wehner PS, et
al: Cerium oxide nanoparticles attenuate monocrotaline induced
right ventricular hypertrophy following pulmonary arterial
hypertension. Biomaterials. 35:9951–9962. 2014.PubMed/NCBI View Article : Google Scholar
|
91
|
Mousavi A, Gharzi A, Gholami M, Beyranvand
F and Takesh M: The therapeutic effect of cerium oxide nanoparticle
on ischaemia/reperfusion injury in rat testis. Andrologia.
53(e14231)2021.PubMed/NCBI
|