Animal models for the study of intracranial hematomas (Review)
- Authors:
- Wellingson Silva Paiva
- Emanuele Zippo
- Carolina Miranda
- Sérgio Brasil
- Daniel Augustin Godoy
- Almir Ferreira De Andrade
- Iuri Neville
- Gustavo Cartaxo Patriota
- Renan Domingues
- Manoel Jacobsen Teixeira
-
Affiliations: Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil, Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil, Department of Intensive Care, Neurointensive Care Unit, Pasteur Hospital, 4700 Catamarca, Argentina, Department of Neurosurgery, Humberto Lucena Hospital, 58031090 João Pessoa, Brazil - Published online on: November 22, 2022 https://doi.org/10.3892/etm.2022.11719
- Article Number: 20
-
Copyright: © Paiva et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ and Panerai RB: Cerebral hemodynamics: Concepts of clinical importance. Arq Neuropsiquiatr. 70:352–356. 2012.PubMed/NCBI View Article : Google Scholar | |
Andrade AF, Paiva WS, Amorim RL, Figueiredo EG, Almeida AN, Brock RS, Bor-Seng-Shu E and Teixeira MJ: Continuous ventricular cerebrospinal fluid drainage with intracranial pressure monitoring for management of posttraumatic diffuse brain swelling. Arq Neuropsiquiatr. 69:79–84. 2011.PubMed/NCBI View Article : Google Scholar | |
Paiva WS, de Andrade AF, de Amorim RL, Muniz RK, Paganelli PM, Bernardo LS, Figueiredo EG and Teixeira MJ: The prognosis of the traumatic subarachnoid hemorrhage: A prospective report of 121 patients. Int Surg. 95:172–176. 2010.PubMed/NCBI | |
Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H and Hanley DF: Spontaneous intracerebral hemorrhage. N Engl J Med. 344:1450–1460. 2001.PubMed/NCBI View Article : Google Scholar | |
van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A and Klijn CJ: Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 9:167–176. 2010.PubMed/NCBI View Article : Google Scholar | |
Broderick JP, Brott TG, Duldner JE, Tomsick T and Huster G: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 24:987–993. 1993.PubMed/NCBI View Article : Google Scholar | |
Fogelholm R, Murros K, Rissanen A and Avikainen S: Long term survival after primary intracerebral haemorrhage: A retrospective population based study. J Neurol Neurosurg Psychiatry. 76:1534–1538. 2005.PubMed/NCBI View Article : Google Scholar | |
Hemphill JCI III, Bonovich DC, Besmertis L, Manley GT and Johnston SC: The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke. 32:891–897. 2001.PubMed/NCBI View Article : Google Scholar | |
Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS, Vespa P, et al: Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 Update: A guideline from the American heart association/American stroke association stroke council, high blood pressure research council, and the quality of care and outcomes in research interdisciplinary working group. Stroke. 38:2001–2023. 2007.PubMed/NCBI View Article : Google Scholar | |
Brasil S, Paiva WS, de Carvalho Nogueira R, Macedo Salinet A and Teixeira MJ: Letter to the editor. Decompressive craniectomy in TBI: What is beyond static evaluations in terms of prognosis? J Neurosurg. 129:845–847. 2018.PubMed/NCBI View Article : Google Scholar | |
Zille M, Farr TD, Keep RF, Römer C, Xi G and Boltze J: Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine. 76(103880)2022.PubMed/NCBI View Article : Google Scholar | |
Godoy DA, Núñez-Patiño RA, Zorrilla-Vaca A, Ziai WC and Hemphill JC III: Intracranial hypertension after spontaneous intracerebral hemorrhage: A systematic review and meta-analysis of prevalence and mortality rate. Neurocrit Care. 31:176–187. 2019.PubMed/NCBI View Article : Google Scholar | |
Brasil S, Bor-Seng-Shu E, de-Lima-Oliveira M, Taccone FS, Gattás G, Nunes DM, Gomes de Oliveira RA, Martins Tomazini B, Tierno PF, Becker RA, et al: Computed tomography angiography accuracy in brain death diagnosis. J Neurosurg: Sep 27, 2019 (Epub ahead of print). | |
Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY and Dwyer BE: Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: In vivo and in vitro studies. Cell Mol Biol (Noisy-le-grand). 46:597–608. 2000.PubMed/NCBI | |
Goulay R, Naveau M, Gaberel T, Vivien D and Parcq J: Optimized tPA: A non-neurotoxic fibrinolytic agent for the drainage of intracerebral hemorrhages. J Cereb Blood Flow Metab. 38:1180–1189. 2018.PubMed/NCBI View Article : Google Scholar | |
Sinar EJ, Mendelow AD, Graham DI and Teasdale GM: Experimental intracerebral hemorrhage: Effects of a temporary mass lesion. J Neurosurg. 66:568–576. 1987.PubMed/NCBI View Article : Google Scholar | |
Fang Y, Tian Y, Huang Q, Wan Y, Xu L, Wang W, Pan D, Zhu S and Xie M: Deficiency of TREK-1 potassium channel exacerbates blood-brain barrier damage and neuroinflammation after intracerebral hemorrhage in mice. J Neuroinflammation. 16(96)2019.PubMed/NCBI View Article : Google Scholar | |
Kane PJ, Modha P, Strachan RD, Cook S, Chambers IR, Clayton CB and Mendelow AD: The effect of immunosuppression on the development of cerebral oedema in an experimental model of intracerebral haemorrhage: Whole body and regional irradiation. J Neurol Neurosurg Psychiatry. 55:781–786. 1992.PubMed/NCBI View Article : Google Scholar | |
Fei X, Dou YN, Wang L, Wu X, Huan Y, Wu S, He X, Lv W, Wei J and Fei Z: Homer1 promotes the conversion of A1 astrocytes to A2 astrocytes and improves the recovery of transgenic mice after intracerebral hemorrhage. J Neuroinflammation. 19(67)2022.PubMed/NCBI View Article : Google Scholar | |
Mello TG, Rosado-de-Castro PH, Vasques JF, Pinhão C, Santos TM, de Lima RR, Foerster BU, Paiva FF, Mendez-Otero R and Pimentel-Coelho PM: Hyperacute transplantation of umbilical cord mesenchymal stromal cells in a model of severe intracerebral hemorrhage. Future Sci OA. 8(FSO793)2022.PubMed/NCBI View Article : Google Scholar | |
Wang G, Li T, Duan SN, Dong L, Sun XG and Xue F: PPAR-γ promotes hematoma clearance through haptoglobin-hemoglobin-CD163 in a rat model of intracerebral hemorrhage. Behav Neurol. 2018(7646104)2018.PubMed/NCBI View Article : Google Scholar | |
Xu J, Chen Z, Yu F, Liu H, Ma C, Xie D, Hu X, Leak RK, Chou SHY, Stetler RA, et al: IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci USA. 117:32679–32690. 2020.PubMed/NCBI View Article : Google Scholar | |
Jing C, Bian L, Wang M, Keep RF, Xi G and Hua Y: Enhancement of hematoma clearance with CD47 blocking antibody in experimental intracerebral hemorrhage. Stroke. 50:1539–1547. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Ting SM, Liu CH, Sun G, Kruzel M, Roy-O'Reilly M and Aronowski J: Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nat Commun. 8(602)2017.PubMed/NCBI View Article : Google Scholar | |
Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng Y, Cao Y, Zeng H, Li J, Yan F, et al: White matter injury after intracerebral hemorrhage. Front Neurol. 12(562090)2021.PubMed/NCBI View Article : Google Scholar | |
Xu F, Shen G, Su Z, He Z and Yuan L: Glibenclamide ameliorates the disrupted blood-brain barrier in experimental intracerebral hemorrhage by inhibiting the activation of NLRP3 inflammasome. Brain Behav. 9(e01254)2019.PubMed/NCBI View Article : Google Scholar | |
Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA and Wolfe SQ: Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J Stroke. 22:29–46. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Chen X, Feng Z, Cai X, Zhu X, Cao M, Yang L, Chen Y, Wang Y and Feng H: MEC17-induced α-tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. J Neurochem. 160:51–63. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS and Wang J: Correction: Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase. PLoS One. 16(e0261640)2021.PubMed/NCBI View Article : Google Scholar | |
Liesz A, Middelhoff M, Zhou W, Karcher S, Illanes S and Veltkamp R: Comparison of humoral neuroinflammation and adhesion molecule expression in two models of experimental intracerebral hemorrhage. Exp Transl Stroke Med. 3(11)2011.PubMed/NCBI View Article : Google Scholar | |
Hijioka M, Anan J, Matsushita H, Ishibashi H, Kurauchi Y, Hisatsune A, Seki T and Katsuki H: Axonal dysfunction in internal capsule is closely associated with early motor deficits after intracerebral hemorrhage in mice. Neurosci Res. 106:38–46. 2016.PubMed/NCBI View Article : Google Scholar | |
Bahader GA, Nash KM, Almarghalani DA, Alhadidi Q, McInerney MF and Shah ZA: Type-I diabetes aggravates post-hemorrhagic stroke cognitive impairment by augmenting oxidative stress and neuroinflammation in mice. Neurochem Int. 149(105151)2021.PubMed/NCBI View Article : Google Scholar | |
Zheng J, Shi L, Liang F, Xu W, Li T, Gao L, Sun Z, Yu J and Zhang J: Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats. Front Neurosci. 12(414)2018.PubMed/NCBI View Article : Google Scholar | |
Jeng BCP, de Andrade AF, Brasil S, Bor-Seng-Shu E, Belon AR, Robertis M, de-Lima-Oliveira M, Rubiano AM, Godoy DA, Teixeira MJ and Paiva WS: Estimation of intracranial pressure by ultrasound of the optic nerve sheath in an animal model of intracranial hypertension. J Clin Neurosci. 86:174–179. 2021.PubMed/NCBI View Article : Google Scholar | |
Soares MS, Andrade AF, Brasil S, DE-Lima-Oliveira M, Belon AR, Bor-Seng-Shu E, Nogueira RC, Godoy DA and Paiva WS: Evaluation of cerebral hemodynamics by transcranial Doppler ultrasonography and its correlation with intracranial pressure in an animal model of intracranial hypertension. Arq Neuropsiquiatr. 80:344–352. 2022.PubMed/NCBI View Article : Google Scholar | |
Liu R, Cao S, Hua Y, Keep RF, Huang Y and Xi G: CD163 expression in neurons after experimental intracerebral hemorrhage. Stroke. 48:1369–1375. 2017.PubMed/NCBI View Article : Google Scholar | |
Cao S, Zheng M, Hua Y, Chen G, Keep RF and Xi G: Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 47:1626–1631. 2016.PubMed/NCBI View Article : Google Scholar | |
Mun-Bryce S, Wilkerson AC, Papuashvili N and Okada YC: Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res. 888:248–255. 2001.PubMed/NCBI View Article : Google Scholar | |
Rohde V, Rohde I, Thiex R, Ince A, Jung A, Dückers G, Gröschel K, Röttger C, Küker W, Müller HD and Gilsbach JM: Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: Rapid reduction in hematoma volume but intensification of delayed edema formation. J Neurosurg. 97:954–962. 2002.PubMed/NCBI View Article : Google Scholar | |
Xie Q, Gu Y, Hua Y, Liu W, Keep RF and Xi G: Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke. 45:290–292. 2014.PubMed/NCBI View Article : Google Scholar | |
Sussman BJ, Barber JB and Goald H: Experimental intracerebral hematoma. Reduction of oxygen tension in brain and cerebrospinal fluid. J Neurosurg. 41:177–186. 1974.PubMed/NCBI View Article : Google Scholar | |
Takasugi S, Ueda S and Matsumoto K: Chronological changes in spontaneous intracerebral hematoma-an experimental and clinical study. Stroke. 16:651–658. 1985.PubMed/NCBI View Article : Google Scholar | |
Whisnant JP, Sayre GP and Millikan CH: Experimental Intracerebral Hematoma. Arch Neurol. 9:586–592. 1963. | |
Symon L, Pasztor E, Branston NM and Dorsch NW: Effect of supratentorial space-occupying lesions on regional intracranial pressure and local cerebral blood flow: An experimental study in baboons. J Neurol Neurosurg Psychiatry. 37:617–626. 1974.PubMed/NCBI View Article : Google Scholar | |
Boltze J, Ferrara F, Hainsworth AH, Bridges LR, Zille M, Lobsien D, Barthel H, McLeod DD, Gräßer F, Pietsch S, et al: Lesional and perilesional tissue characterization by automated image processing in a novel gyrencephalic animal model of peracute intracerebral hemorrhage. J Cereb Blood Flow Metab. 39:2521–2535. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin X, Tang Y, Sun B, Hou Z, Meng H, Li Z, Liu Q and Liu S: Cerebral glucose metabolism: Influence on perihematomal edema formation after intracerebral hemorrhage in cat models. Acta Radiol. 51:549–554. 2010.PubMed/NCBI View Article : Google Scholar | |
Kaufman HH, Pruessner JL, Bernstein DP, Borit A, Ostrow PT and Cahall DL: A rabbit model of intracerebral hematoma. Acta Neuropathol. 65:318–321. 1985.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Qian X, Zheng J, Ai P, Cao X, Pan X, Chen T and Wang Y: Controlled decompression alleviates brain injury via attenuating oxidative damage and neuroinflammation in acute intracranial hypertension. Biomed Res Int. 2022(1936691)2022.PubMed/NCBI View Article : Google Scholar | |
Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP and Brott TG: Lobar intracerebral hemorrhage model in pigs: Rapid edema development in perihematomal white matter. Stroke. 27:490–497. 1996.PubMed/NCBI View Article : Google Scholar | |
Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM and Myers RE: Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg. 88:1058–1065. 1998.PubMed/NCBI View Article : Google Scholar | |
Chen J, Koduri S, Dai S, Toyota Y, Hua Y, Chaudhary N, Pandey AS, Keep RF and Xi G: Intra-hematomal white matter tracts act as a scaffold for macrophage infiltration after intracerebral hemorrhage. Transl Stroke Res. 12:858–865. 2021.PubMed/NCBI View Article : Google Scholar | |
MacLellan CL, Silasi G, Auriat AM and Colbourne F: Rodent models of intracerebral hemorrhage. Stroke. 41 (Suppl 10):S95–S98. 2010.PubMed/NCBI View Article : Google Scholar | |
Yang GY, Betz AL, Chenevert TL, Brunberg JA and Hoff JT: Experimental intracerebral hemorrhage: Relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg. 81:93–102. 1994.PubMed/NCBI View Article : Google Scholar | |
Xi G, Keep RF and Hoff JT: Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 89:991–996. 1998.PubMed/NCBI View Article : Google Scholar | |
Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG and Hoff JT: Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 29:2580–2586. 1998.PubMed/NCBI View Article : Google Scholar | |
Hua Y, Xi G, Keep RF and Hoff JT: Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 92:1016–1022. 2000.PubMed/NCBI View Article : Google Scholar | |
Xi G, Hua Y, Bhasin RR, Ennis SR, Keep RF and Hoff JT: Mechanisms of edema formation after intracerebral hemorrhage: Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke. 32:2932–2938. 2001.PubMed/NCBI View Article : Google Scholar | |
Belayev L, Saul I, Curbelo K, Busto R, Belayev A, Zhang Y, Riyamongkol P, Zhao W and Ginsberg MD: Experimental intracerebral hemorrhage in the mouse: Histological, behavioral, and hemodynamic characterization of a double-injection model. Stroke. 34:2221–2227. 2003.PubMed/NCBI View Article : Google Scholar | |
Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT and Xi G: Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 100:672–678. 2004.PubMed/NCBI View Article : Google Scholar | |
Liu L, Wang S, Xu R, Zheng J, Tang J, Tang X and Zhang D: Experimental intracerebral haemorrhage: Description of a semi-coagulated autologous blood model in rats. Neurol Res. 37:874–879. 2015.PubMed/NCBI View Article : Google Scholar | |
Bullock R, Mendelow AD, Teasdale GM and Graham DI: Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: Description of technique, ICP changes and neuropathological findings. Neurol Res. 6:184–188. 1984.PubMed/NCBI View Article : Google Scholar | |
Manaenko A, Chen H, Zhang JH and Tang J: Comparison of different preclinical models of intracerebral hemorrhage. Acta Neurochir Suppl. 111:9–14. 2011.PubMed/NCBI View Article : Google Scholar | |
Wakisaka Y, Chu Y, Miller JD, Rosenberg GA and Heistad DD: Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 30:56–69. 2010.PubMed/NCBI View Article : Google Scholar | |
Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW and Xue M: Intracerebral haemorrhage: From clinical settings to animal models. Stroke Vasc Neurol. 5:388–395. 2020.PubMed/NCBI View Article : Google Scholar | |
Deinsberger W, Vogel J, Kuschinsky W, Auer LM and Böker DK: Experimental intracerebral hemorrhage: Description of a double injection model in rats. Neurol Res. 18:475–477. 1996.PubMed/NCBI View Article : Google Scholar | |
Deinsberger W, Hartmann M, Vogel J, Jansen O, Kuschinsky W, Sartor K and Böker DK: Local fibrinolysis and aspiration of intracerebral hematomas in rats. An experimental study using MR monitoring. Neurol Res. 20:349–352. 1998.PubMed/NCBI View Article : Google Scholar | |
Orakcioglu B, Becker K, Sakowitz OW, Herweh C, Köhrmann M, Huttner HB, Steiner T, Unterberg A and Schellinger PD: MRI of the perihemorrhagic zone in a rat ICH model: Effect of hematoma evacuation. Neurocrit Care. 8:448–455. 2008.PubMed/NCBI View Article : Google Scholar | |
Orakcioglu B, Becker K, Sakowitz OW, Unterberg A and Schellinger PD: Serial diffusion and perfusion MRI analysis of the perihemorrhagic zone in a rat ICH model. Acta Neurochir Suppl. 103:15–18. 2008.PubMed/NCBI View Article : Google Scholar | |
Deng S, Feng S, Wang W, Zhao F and Gong Y: Biomarker and drug target discovery using quantitative proteomics post-intracerebral hemorrhage stroke in the rat brain. J Mol Neurosci. 66:639–648. 2018.PubMed/NCBI View Article : Google Scholar | |
James ML, Warner DS and Laskowitz DT: Preclinical models of intracerebral hemorrhage: A translational perspective. Neurocrit Care. 9:139–152. 2008.PubMed/NCBI View Article : Google Scholar | |
Rosenberg GA, Mun-Bryce S, Wesley M and Kornfeld M: Collagenase-induced intracerebral hemorrhage in rats. Stroke. 21:801–807. 1990.PubMed/NCBI View Article : Google Scholar | |
Clark W, Gunion-Rinker L, Lessov N and Hazel K: Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke. 29:2136–2140. 1998.PubMed/NCBI View Article : Google Scholar | |
Wang J, Wang G, Yi J, Xu Y, Duan S, Li T, Sun XG and Dong L: The effect of monascin on hematoma clearance and edema after intracerebral hemorrhage in rats. Brain Res Bull. 134:24–29. 2017.PubMed/NCBI View Article : Google Scholar | |
Fu P, Liu J, Bai Q, Sun X, Yao Z, Liu L, Wu C and Wang G: Long-term outcomes of monascin-a novel dual peroxisome proliferator-activated receptor γ/nuclear factor-erythroid 2 related factor-2 agonist in experimental intracerebral hemorrhage. Ther Adv Neurol Disord: May 14, 2020. | |
Wasserman JK, Yang H and Schlichter LC: Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs aged rats. Eur J Neurosci. 28:1316–1328. 2008.PubMed/NCBI View Article : Google Scholar | |
Liddle L, Reinders R, South S, Blacker D, Knuckey N, Colbourne F and Meloni B: Poly-arginine-18 peptides do not exacerbate bleeding, or improve functional outcomes following collagenase-induced intracerebral hemorrhage in the rat. PLoS One. 14(e0224870)2019.PubMed/NCBI View Article : Google Scholar | |
Akhter M, Qin T, Fischer P, Sadeghian H, Kim HH, Whalen MJ, Goldstein JN and Ayata C: Rho-kinase inhibitors do not expand hematoma volume in acute experimental intracerebral hemorrhage. Ann Clin Transl Neurol. 5:769–776. 2018.PubMed/NCBI View Article : Google Scholar | |
Lee ST, Chu K, Sinn DI, Jung KH, Kim EH, Kim SJ, Kim JM, Ko SY, Kim M and Roh JK: Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J Neurochem. 96:1728–1739. 2006.PubMed/NCBI View Article : Google Scholar | |
Wu CH, Shyue SK, Hung TH, Wen S, Lin CC, Chang CF and Chen SF: Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation. 14(230)2017.PubMed/NCBI View Article : Google Scholar | |
Kinoshita K, Ohtomo R, Takase H, Hamanaka G, Chung KK, Lok J, Katsuki H and Arai K: Different responses after intracerebral hemorrhage between young and early middle-aged mice. Neurosci Lett. 735(135249)2020.PubMed/NCBI View Article : Google Scholar | |
Li W, Chopp M, Zacharek A, Yang W, Chen Z, Landschoot-Ward J, Venkat P and Chen J: SUMO1 deficiency exacerbates neurological and cardiac dysfunction after intracerebral hemorrhage in aged mice. Transl Stroke Res. 12:631–642. 2021.PubMed/NCBI View Article : Google Scholar | |
Kirkman MA, Allan SM and Parry-Jones AR: Experimental intracerebral hemorrhage: Avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 31:2135–2151. 2011.PubMed/NCBI View Article : Google Scholar | |
Chang CC, Huang KH, Hsu SP, Lee YG, Sue YM and Juan SH: Simvastatin reduces the carcinogenic effect of 3-methylcholanthrene in renal epithelial cells through histone deacetylase 1 inhibition and RhoA reactivation. Sci Rep. 9(4606)2019.PubMed/NCBI View Article : Google Scholar | |
Wang M, Hua Y, Keep RF, Wan S, Novakovic N and Xi G: Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke. 50:1859–1868. 2019.PubMed/NCBI View Article : Google Scholar | |
Strbian D, Durukan A and Tatlisumak T: Rodent models of hemorrhagic stroke. Curr Pharm Des. 14:352–358. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhou X, Chen L, Feng C, Li B, Tang J, Liu A, Lv F and Li T: Establishing an animal model of intracerebral hemorrhage under the guidance of ultrasound. Ultrasound Med Biol. 39:2116–2122. 2013.PubMed/NCBI View Article : Google Scholar | |
Lei B, Sheng H, Wang H, Lascola CD, Warner DS, Laskowitz DT and James ML: Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp. (51439)2014.PubMed/NCBI View Article : Google Scholar | |
MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J and Colbourne F: Intracerebral hemorrhage models in rat: Comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 28:516–525. 2008.PubMed/NCBI View Article : Google Scholar | |
Funnell WR, Maysinger D and Cuello AC: Three-dimensional reconstruction and quantitative evaluation of devascularizing cortical lesions in the rat. J Neurosci Methods. 35:147–156. 1990.PubMed/NCBI View Article : Google Scholar | |
Xue M and Del Bigio MR: Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis. 12:152–159. 2003.PubMed/NCBI View Article : Google Scholar | |
Lauer A, Cianchetti FA, Van Cott EM, Schlunk F, Schulz E, Pfeilschifter W, Steinmetz H, Schaffer CB, Lo EH and Foerch C: Anticoagulation with the oral direct thrombin inhibitor dabigatran does not enlarge hematoma volume in experimental intracerebral hemorrhage. Circulation. 124:1654–1662. 2011.PubMed/NCBI View Article : Google Scholar | |
Alharbi BM, Tso MK and Macdonald RL: Animal models of spontaneous intracerebral hemorrhage. Neurol Res. 38:448–455. 2016.PubMed/NCBI View Article : Google Scholar | |
Andrade AF, Soares MS, Patriota GC, Belon AR, Paiva WS, Bor-Seng-Shu E, Oliveira Mde L, Nascimento CN, Noleto GS, Alves Junior AC, et al: Experimental model of intracranial hypertension with continuous multiparametric monitoring in swine. Arq Neuropsiquiatr. 71:802–806. 2013.PubMed/NCBI View Article : Google Scholar | |
Azevedo MR, de-Lima-Oliveira M, Belon AR, Brasil S, Teixeira MJ, Paiva WS and Bor-Seng-Shu E: Assessing ultrasonographic optic nerve sheath diameter in animal model with anesthesia regimens. Acta Cir Bras. 37(e370308)2022.PubMed/NCBI View Article : Google Scholar | |
Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M and Pascual-Leone A: Transcranial direct current stimulation: A computer-based human model study. Neuroimage. 35:1113–1124. 2007.PubMed/NCBI View Article : Google Scholar | |
Wagner KR: Modeling intracerebral hemorrhage: Glutamate, nuclear factor-kappa B signaling and cytokines. Stroke. 38 (2 Suppl):S753–S758. 2007.PubMed/NCBI View Article : Google Scholar | |
Shi Y, Li Z, Zhang S, Xie M, Meng X, Xu J, Liu N and Tang Z: Establishing a model of supratentorial hemorrhage in the piglet. Tohoku J Exp Med. 220:33–40. 2010.PubMed/NCBI View Article : Google Scholar | |
Küker W, Thiex R, Rohde I, Rohde V and Thron A: Experimental acute intracerebral hemorrhage. Value of MR sequences for a safe diagnosis at 1.5 and 0.5 T. Acta Radiol. 41:544–552. 2000.PubMed/NCBI View Article : Google Scholar | |
Wagner KR, Packard BA, Hall CL, Smulian AG, Linke MJ, De Courten-Myers GM, Packard LM and Hall NC: Protein oxidation and heme oxygenase-1 induction in porcine white matter following intracerebral infusions of whole blood or plasma. Dev Neurosci. 24:154–160. 2002.PubMed/NCBI View Article : Google Scholar | |
Wagner KR, Sharp FR, Ardizzone TD, Lu A and Clark JF: Heme and iron metabolism: Role in cerebral hemorrhage. J Cereb Blood Flow Metab. 23:629–652. 2003.PubMed/NCBI View Article : Google Scholar | |
Zuccarello M, Andaluz N and Wagner KR: Minimally invasive therapy for intracerebral hematomas. Neurosurg Clin N Am. 13:349–354. 2002.PubMed/NCBI View Article : Google Scholar | |
Wagner KR, Xi G, Hua Y, Zuccarello M, de Courten-Myers GM, Broderick JP and Brott TG: Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: Edema reduction and blood-brain barrier protection. J Neurosurg. 90:491–498. 1999.PubMed/NCBI View Article : Google Scholar | |
Gu Y, Hua Y, Keep RF, Morgenstern LB and Xi G: Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 40:2241–2243. 2009.PubMed/NCBI View Article : Google Scholar | |
Friess SH, Ralston J, Eucker SA, Helfaer MA, Smith C and Margulies SS: Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury. Neurosurgery. 69:1139–1147. 2011.PubMed/NCBI View Article : Google Scholar |