![Open Access](/resources/images/iconopenaccess.png)
Somatic GATA4 mutation contributes to tetralogy of Fallot
- Authors:
- Pradhan Abhinav
- Yan-Jie Li
- Ri-Tai Huang
- Xing-Yuan Liu
- Jia-Ning Gu
- Chen-Xi Yang
- Ying-Jia Xu
- Juan Wang
- Yi-Qing Yang
-
Affiliations: Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China, Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China, Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China, Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China, Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China - Published online on: January 8, 2024 https://doi.org/10.3892/etm.2024.12379
- Article Number: 91
-
Copyright: © Abhinav et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, et al: Heart disease and stroke statistics-2023 update: A report from the American Heart Association. Circulation. 147:e93–e621. 2023.PubMed/NCBI View Article : Google Scholar | |
Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M and Jin SC: Molecular genetics and complex inheritance of congenital heart disease. Genes (Basel). 12(1020)2021.PubMed/NCBI View Article : Google Scholar | |
Spaziani G, Girolami F, Arcieri L, Calabri GB, Porcedda G, Di Filippo C, Surace FC, Pozzi M and Favilli S: Bicuspid aortic valve in children and adolescents: A comprehensive review. Diagnostics (Basel). 12(1751)2022.PubMed/NCBI View Article : Google Scholar | |
Martin LJ and Benson DW: Focused strategies for defining the genetic architecture of congenital heart defects. Genes (Basel). 12(827)2021.PubMed/NCBI View Article : Google Scholar | |
Brudy L, Meyer M, Oberhoffer R, Ewert P and Müller J: Move more-be happier? Physical activity and health-related quality of life in children with congenital heart disease. Am Heart J. 241:68–73. 2021.PubMed/NCBI View Article : Google Scholar | |
Moons P, Luyckx K, Thomet C, Budts W, Enomoto J, Sluman MA, Lu CW, Jackson JL, Khairy P, Cook SC, et al: Physical functioning, mental health, and quality of life in different congenital heart defects: Comparative analysis in 3538 patients from 15 countries. Can J Cardiol. 37:215–223. 2021.PubMed/NCBI View Article : Google Scholar | |
Freiberger A, Busse A, Ewert P, Huntgeburth M, Kaemmerer H, Kohls N, Nagdyman N, Richter C, Röhrich C, von Scheidt F, et al: Quality of life in adults with congenital heart disease with and without pulmonary hypertension: A comparative study. Cardiovasc Diagn Ther. 12:758–766. 2022.PubMed/NCBI View Article : Google Scholar | |
Ly R, Karsenty C, Amedro P, Cohen S, Domanski O, Godart F, Radojevic J, Vaksmann G, Naccache N, Boubrit A, et al: Health-Related quality of life and its association with outcomes in adults with congenital heart disease and heart failure: Insight From FRESH-ACHD Registry. J Am Heart Assoc. 12(e027819)2023.PubMed/NCBI View Article : Google Scholar | |
Meyer M, Brudy L, Fuertes-Moure A, Hager A, Oberhoffer-Fritz R, Ewert P and Müller J: E-Health exercise intervention for pediatric patients with congenital heart disease: A randomized controlled trial. J Pediatr. 233:163–168. 2021.PubMed/NCBI View Article : Google Scholar | |
Fritz C, Hock J, Oberhoffer R, Hager A, Ewert P and Müller J: reduced parasympathetic activity in patients with different types of congenital heart disease and associations to exercise capacity. J Cardiopulm Rehabil Prev. 41:35–39. 2021.PubMed/NCBI View Article : Google Scholar | |
Sheng SP, Feinberg JL, Bostrom JA, Tang Y, Sweeney G, Pierre A, Katz ES, Whiteson JH, Haas F, Dodson JA and Halpern DG: Adherence and exercise capacity improvements of patients with adult congenital heart disease participating in cardiac rehabilitation. J Am Heart Assoc. 11(e023896)2022.PubMed/NCBI View Article : Google Scholar | |
Masood IR, Detterich J, Cerrone D, Lewinter K, Shah P, Kato R and Sabati A: Reduced forced vital capacity and the number of chest wall surgeries are associated with decreased exercise capacity in children with congenital heart disease. Pediatr Cardiol. 43:54–61. 2022.PubMed/NCBI View Article : Google Scholar | |
Willinger L, Hock J, Hager A, Oberhoffer-Fritz R, Ewert P and Müller J: Heart-Focused anxiety is prevalent in adults with congenital heart disease and associated with reduced exercise capacity. J Cardiopulm Rehabil Prev. 43:277–281. 2023.PubMed/NCBI View Article : Google Scholar | |
Sadhwani A, Wypij D, Rofeberg V, Gholipour A, Mittleman M, Rohde J, Velasco-Annis C, Calderon J, Friedman KG, Tworetzky W, et al: Fetal brain volume predicts neurodevelopment in congenital heart disease. Circulation. 145:1108–1119. 2022.PubMed/NCBI View Article : Google Scholar | |
Parekh SA, Cox SM, Barkovich AJ, Chau V, Steurer MA, Xu D, Miller SP, McQuillen PS and Peyvandi S: The effect of size and asymmetry at birth on brain injury and neurodevelopmental outcomes in congenital heart disease. Pediatr Cardiol. 43:868–877. 2022.PubMed/NCBI View Article : Google Scholar | |
Peyvandi S and Rollins C: Fetal brain development in congenital heart disease. Can J Cardiol. 39:115–122. 2023.PubMed/NCBI View Article : Google Scholar | |
Brossard-Racine M and Panigrahy A: Structural brain alterations and their associations with function in children, adolescents, and young adults with congenital heart disease. Can J Cardiol. 39:123–132. 2023.PubMed/NCBI View Article : Google Scholar | |
Cromb D, Bonthrone AF, Maggioni A, Cawley P, Dimitrova R, Kelly CJ, Cordero-Grande L, Carney O, Egloff A, Hughes E, et al: Individual assessment of perioperative brain growth trajectories in infants with congenital heart disease: Correlation with clinical and surgical risk factors. J Am Heart Assoc. 12(e028565)2023.PubMed/NCBI View Article : Google Scholar | |
Karsenty C, Waldmann V, Mulder B, Hascoet S and Ladouceur M: Thromboembolic complications in adult congenital heart disease: the knowns and the unknowns. Clin Res Cardiol. 10:1380–1391. 2021.PubMed/NCBI View Article : Google Scholar | |
Giang KW, Fedchenko M, Dellborg M, Eriksson P and Mandalenakis Z: Burden of ischemic stroke in patients with congenital heart disease: A nationwide, case-control study. J Am Heart Assoc. 10(e020939)2021.PubMed/NCBI View Article : Google Scholar | |
Yeh HR, Kim EH, Yu JJ, Yun TJ, Ko TS and Yum MS: Arterial ischemic stroke in children with congenital heart diseases. Pediatr Int. 64(e15200)2022.PubMed/NCBI View Article : Google Scholar | |
Kourelis G, Kanakis M, Samanidis G, Tzannis K, Bobos D, Kousi T, Apostolopoulou S, Kakava F, Kyriakoulis K, Bounta S, et al: Acute kidney injury predictors and outcomes after cardiac surgery in children with congenital heart disease: An observational cohort study. Diagnostics (Basel). 12(2397)2022.PubMed/NCBI View Article : Google Scholar | |
Xie Y, Jiang W, Cao J and Xie H: Dexmedetomidine attenuates acute kidney injury in children undergoing congenital heart surgery with cardiopulmonary bypass by inhibiting the TLR3/NF-κB signaling pathway. Am J Transl Res. 13:2763–2773. 2021.PubMed/NCBI | |
Gillesén M, Fedchenko M, Giang KW, Dimopoulos K, Eriksson P, Dellborg M and Mandalenakis Z: Chronic kidney disease in patients with congenital heart disease: A nationwide, register-based cohort study. Eur Heart J Open. 2(oeac055)2022.PubMed/NCBI View Article : Google Scholar | |
Reiter FP, Hadjamu NJ, Nagdyman N, Zachoval R, Mayerle J, De Toni EN, Kaemmerer H and Denk G: Congenital heart disease-associated liver disease: A narrative review. Cardiovasc Diagn Ther. 11:577–590. 2021.PubMed/NCBI View Article : Google Scholar | |
Rosenzweig EB and Krishnan U: Congenital heart disease-associated pulmonary hypertension. Clin Chest Med. 42:9–18. 2021.PubMed/NCBI View Article : Google Scholar | |
Chiu SN, Lu CW, Lin MT, Chen CA, Wu MH and Wang JK: Pulmonary hypertension in adult congenital heart disease in Asia: A distinctive feature of complex congenital heart disease. J Am Heart Assoc. 11(e022596)2022.PubMed/NCBI View Article : Google Scholar | |
Lindberg L: Long-Term follow-up of pediatric patients with severe postoperative pulmonary hypertension after correction of congenital heart defects. Pediatr Cardiol. 43:827–836. 2022.PubMed/NCBI View Article : Google Scholar | |
Snygg-Martin U, Giang KW, Dellborg M, Robertson J and Mandalenakis Z: Cumulative incidence of infective endocarditis in patients with congenital heart disease: A nationwide, case-control study over nine decades. Clin Infect Dis. 73:1469–1475. 2021.PubMed/NCBI View Article : Google Scholar | |
van Melle JP, Roos-Hesselink JW, Bansal M, Kamp O, Meshaal M, Pudich J, Luksic VR, Rodriguez-Alvarez R, Sadeghpour A, Hanzevacki JS, et al: Infective endocarditis in adult patients with congenital heart disease. Int J Cardiol. 370:178–185. 2023.PubMed/NCBI View Article : Google Scholar | |
Havers-Borgersen E, Butt JH, Østergaard L, Petersen JK, Torp-Pedersen C, Køber L and Fosbøl EL: Long-term incidence of infective endocarditis among patients with congenital heart disease. Am Heart J. 259:9–20. 2023.PubMed/NCBI View Article : Google Scholar | |
Arnaert S, De Meester P, Troost E, Droogne W, Van Aelst L, Van Cleemput J, Voros G, Gewillig M, Cools B, Moons P, et al: Heart failure related to adult congenital heart disease: prevalence, outcome and risk factors. ESC Heart Fail. 8:2940–2950. 2021.PubMed/NCBI View Article : Google Scholar | |
Egbe AC, Miranda WR, Jain CC, Bonnichsen CR, Anderson JH, Dearani JA, Warnes CA, Crestanello J and Connolly HM: Incidence and outcomes of advanced heart failure in adults with congenital heart disease. Circ Heart Fail. 15(e009675)2022.PubMed/NCBI View Article : Google Scholar | |
Lu CW, Wang JK, Yang HL, Kovacs AH, Luyckx K, Ruperti-Repilado FJ, Van De Bruaene A, Enomoto J, Sluman MA, Jackson JL, et al: Heart failure and patient-reported outcomes in adults with congenital heart disease from 15 countries. J Am Heart Assoc. 11(e024993)2022.PubMed/NCBI View Article : Google Scholar | |
Fischer AJ, Enders D, Wasmer K, Marschall U, Baumgartner H and Diller GP: Impact of specialized electrophysiological care on the outcome of catheter ablation for supraventricular tachycardias in adults with congenital heart disease: Independent risk factors and gender aspects. Heart Rhythm. 18:1852–1859. 2021.PubMed/NCBI View Article : Google Scholar | |
Casteigt B, Samuel M, Laplante L, Shohoudi A, Apers S, Kovacs AH, Luyckx K, Thomet C, Budts W, Enomoto J, et al: Atrial arrhythmias and patient-reported outcomes in adults with congenital heart disease: An international study. Heart Rhythm. 18:793–800. 2021.PubMed/NCBI View Article : Google Scholar | |
Wasmer K, Eckardt L, Baumgartner H and Köbe J: Therapy of supraventricular and ventricular arrhythmias in adults with congenital heart disease-narrative review. Cardiovasc Diagn Ther. 11:550–562. 2021.PubMed/NCBI View Article : Google Scholar | |
Vehmeijer JT, Koyak Z, Leerink JM, Zwinderman AH, Harris L, Peinado R, Oechslin EN, Robbers-Visser D, Groenink M, Boekholdt SM, et al: Identification of patients at risk of sudden cardiac death in congenital heart disease: The PRospEctiVE study on implaNTable cardIOverter defibrillator therapy and suddeN cardiac death in Adults with Congenital Heart Disease (PREVENTION-ACHD). Heart Rhythm. 18:785–792. 2021.PubMed/NCBI View Article : Google Scholar | |
Diller GP, Orwat S, Lammers AE, Radke RM, De-Torres-Alba F, Schmidt R, Marschall U, Bauer UM, Enders D, Bronstein L, et al: Lack of specialist care is associated with increased morbidity and mortality in adult congenital heart disease: A population-based study. Eur Heart J. 42:4241–4248. 2021.PubMed/NCBI View Article : Google Scholar | |
Williams JL, Torok RD, D'Ottavio A, Spears T, Chiswell K, Forestieri NE, Sang CJ, Paolillo JA, Walsh MJ, Hoffman TM, et al: Causes of death in infants and children with congenital heart disease. Pediatr Cardiol. 42:1308–1315. 2021.PubMed/NCBI View Article : Google Scholar | |
Triedman JK and Newburger JW: Trends in congenital heart disease: The next decade. Circulation. 133:2716–2733. 2016.PubMed/NCBI View Article : Google Scholar | |
Bouma BJ and Mulder BJ: Changing landscape of congenital heart disease. Circ Res. 120:908–922. 2017.PubMed/NCBI View Article : Google Scholar | |
Rao PS and Agarwal A: Advances in the diagnosis and management of congenital heart disease in children. Children (Basel). 9(1056)2022.PubMed/NCBI View Article : Google Scholar | |
Williams RG: Late causes of death after congenital heart defects: A population-based study from finland. J Am Coll Cardiol. 68:499–501. 2016.PubMed/NCBI View Article : Google Scholar | |
Niwa K, Kaemmerer H and von Kodolitsch Y: Current diagnosis and management of late complications in adult congenital heart disease. Cardiovasc Diagn Ther. 11:478–480. 2021.PubMed/NCBI View Article : Google Scholar | |
Huang RT, Xue S, Xu YJ, Zhou M and Yang YQ: Somatic GATA5 mutations in sporadic tetralogy of Fallot. Int J Mol Med. 33:1227–1235. 2014.PubMed/NCBI View Article : Google Scholar | |
Boyd R, McMullen H, Beqaj H and Kalfa D: Environmental exposures and congenital heart disease. Pediatrics. 149(e2021052151)2022.PubMed/NCBI View Article : Google Scholar | |
García-Flores E, Rodríguez-Pérez JM, Borgonio-Cuadra VM, Vargas-Alarcón G, Calderón-Colmenero J, Sandoval JP, García-Montes JA, Espinoza-Gutiérrez VM, Reyes-García JG, Cazarín-Santos BG, et al: DNA Methylation Levels of the TBX5 gene promoter are associated with congenital septal defects in mexican paediatric patients. Biology (Basel). 11(96)2022.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Xiong Y, Dong X, Wang H, Qian Y, Ma D and Li X: Genome-wide methylation analysis reveals differentially methylated CpG sites and altered expression of heart development-associated genes in fetuses with cardiac defects. Exp Ther Med. 22(1032)2021.PubMed/NCBI View Article : Google Scholar | |
Hu C, Huang S, Wu F and Ding H: MicroRNA-219-5p participates in cyanotic congenital heart disease progression by regulating cardiomyocyte apoptosis. Exp Ther Med. 21(36)2021.PubMed/NCBI View Article : Google Scholar | |
Choudhury TZ and Garg V: Molecular genetic mechanisms of congenital heart disease. Curr Opin Genet Dev. 75(101949)2022.PubMed/NCBI View Article : Google Scholar | |
Sharma V, Goessling LS, Brar AK, Joshi CS, Mysorekar IU and Eghtesady P: Coxsackievirus B3 infection early in pregnancy induces congenital heart defects through suppression of fetal cardiomyocyte proliferation. J Am Heart Assoc. 10(e017995)2021.PubMed/NCBI View Article : Google Scholar | |
Han X, Wang B, Jin D, Liu K, Wang H, Chen L and Zu Y: Precise dose of folic acid supplementation is essential for embryonic heart development in zebrafish. Biology (Basel). 11(28)2021.PubMed/NCBI View Article : Google Scholar | |
Wang C, Lv H, Ling X, Li H, Diao F, Dai J, Du J, Chen T, Xi Q, Zhao Y, et al: Association of assisted reproductive technology, germline de novo mutations and congenital heart defects in a prospective birth cohort study. Cell Res. 31:919–928. 2021.PubMed/NCBI View Article : Google Scholar | |
Lahrouchi N, Postma AV, Salazar CM, De Laughter DM, Tjong F, Piherová L, Bowling FZ, Zimmerman D, Lodder EM, Ta-Shma A, et al: Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy. J Clin Invest. 131(e142148)2021.PubMed/NCBI View Article : Google Scholar | |
Roifman M, Chung BHY, Reid DM, Teitelbaum R, Martin N, Nield LE, Thompson M, Shannon P and Chitayat D: Heterozygous NOTCH1 deletion associated with variable congenital heart defects. Clin Genet. 99:836–841. 2021.PubMed/NCBI View Article : Google Scholar | |
Ekure EN, Adeyemo A, Liu H, Sokunbi O, Kalu N, Martinez AF, Owosela B, Tekendo-Ngongang C, Addissie YA, Olusegun-Joseph A, et al: Exome sequencing and congenital heart disease in sub-saharan Africa. Circ Genom Precis Med. 14(e003108)2021.PubMed/NCBI View Article : Google Scholar | |
van Walree ES, Dombrowsky G, Jansen IE, Mirkov MU, Zwart R, Ilgun A, Guo D, Clur SB, Amin AS, Savage JE, et al: Germline variants in HEY2 functional domains lead to congenital heart defects and thoracic aortic aneurysms. Gene Med. 23:103–110. 2021.PubMed/NCBI View Article : Google Scholar | |
Fu F, Li R, Lei TY, Wang D, Yang X, Han J, Pan M, Zhen L, Li J, Li FT, et al: Compound heterozygous mutation of the ASXL3 gene causes autosomal recessive congenital heart disease. Hum Genet. 140:333–348. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH and Yang YQ: SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet. 64(104211)2021.PubMed/NCBI View Article : Google Scholar | |
Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ and Yang YQ: Identification of SOX18 as a new gene predisposing to congenital heart disease. Diagnostics (Basel). 12(1917)2022.PubMed/NCBI View Article : Google Scholar | |
Huang RT, Guo YH, Yang CX, Gu JN, Qiu XB, Shi HY, Xu YJ, Xue S and Yang YQ: SOX7 loss-of-function variation as a cause of familial congenital heart disease. Am J Transl Res. 14:1672–1684. 2022.PubMed/NCBI | |
Abhinav P, Zhang GF, Zhao CM, Xu YJ, Wang J and Yang YQ: A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve. Exp Ther Med. 23(311)2022.PubMed/NCBI View Article : Google Scholar | |
Paszkowska A, Piekutowska-Abramczuk D, Ciara E, Mirecka-Rola A, Brzezinska M, Wicher D, Kostrzewa G, Sarnecki J and Ziółkowska L: Clinical presentation of left ventricular noncompaction cardiomyopathy and bradycardia in three families carrying HCN4 pathogenic variants. Genes (Basel). 13(477)2022.PubMed/NCBI View Article : Google Scholar | |
Ke ZP, Zhang GF, Guo YH, Sun YM, Wang J, Li N, Qiu XB, Xu YJ and Yang YQ: A novel PRRX1 loss-of-function variation contributing to familial atrial fibrillation and congenital patent ductus arteriosus. Genet Mol Biol. 45(e20210378)2022.PubMed/NCBI View Article : Google Scholar | |
Debiec RM, Hamby SE, Jones PD, Safwan K, Sosin M, Hetherington SL, Sprigings D, Sharman D, Lee K, Salahshouri P, et al: Contribution of NOTCH1 genetic variants to bicuspid aortic valve and other congenital lesions. Heart. 108:1114–1120. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Qiao XH, Xu YJ, Liu XY, Huang RT, Xue S, Qiu HY and Yang YQ: SMAD1 Loss-of-Function variant responsible for congenital heart disease. Biomed Res Int. 2022(9916325)2022.PubMed/NCBI View Article : Google Scholar | |
Meerschaut I, Steyaert W, Bové T, François K, Martens T, De Groote K, De Wilde H, Muiño Mosquera L, Panzer J, Vandekerckhove K, et al: Exploring the mutational landscape of isolated congenital heart defects: An exome sequencing study using cardiac DNA. Genes (Basel). 13(1214)2022.PubMed/NCBI View Article : Google Scholar | |
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, et al: Clustering of genetic anomalies of cilia outer dynein arm and central apparatus in patients with transposition of the great arteries. Genes (Basel). 13(1662)2022.PubMed/NCBI View Article : Google Scholar | |
Okashah S, Vasudeva D, El Jerbi A, Khodjet-El-Khil H, Al-Shafai M, Syed N, Kambouris M, Udassi S, Saraiva LR, Al-Saloos H, et al: Investigation of genetic causes in patients with congenital heart disease in qatar: Findings from the Sidra Cardiac Registry. Genes (Basel). 13(1369)2022.PubMed/NCBI View Article : Google Scholar | |
Azab B, Aburizeg D, Ji W, Jeffries L, Isbeih NJ, Al-Akily AS, Mohammad H, Osba YA, Shahin MA, Dardas Z, et al: TBX5 variant with the novel phenotype of mixed-type total anomalous pulmonary venous return in Holt-Oram Syndrome and variable intrafamilial heart defects. Mol Med Rep. 25(210)2022.PubMed/NCBI View Article : Google Scholar | |
Li YJ, Wang J, Ye WG, Liu XY, Li L, Qiu XB, Chen H, Xu YJ, Yang YQ, Bai D and Huang RT: Discovery of GJC1 (Cx45) as a new gene underlying congenital heart disease and arrhythmias. Biology (Basel). 12(346)2023.PubMed/NCBI View Article : Google Scholar | |
Wang H, Xiao F, Qian Y, Wu B, Dong X, Lu Y, Cheng G, Wang L, Yan K, Yang L, et al: Genetic architecture in neonatal intensive care unit patients with congenital heart defects: a retrospective study from the China Neonatal Genomes Project. J Med Genet. 60:247–253. 2023.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Xu YJ, Yang CX, Huang RT, Xue S, Yuan F and Yang YQ: SMAD4 loss-of-function mutation predisposes to congenital heart disease. Eur J Med Genet. 66(104677)2023.PubMed/NCBI View Article : Google Scholar | |
Deng Q, Wang X, Gao J, Xia X, Wang Y, Zhang Y and Chen Y: Growth restriction and congenital heart disease caused by a novel TAB2 mutation: A case report. Exp Ther Med. 25(258)2023.PubMed/NCBI View Article : Google Scholar | |
Afouda BA: Towards understanding the gene-specific roles of GATA factors in heart development: Does GATA4 lead the way? Int J Mol Sci. 23(5255)2022.PubMed/NCBI View Article : Google Scholar | |
Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, et al: GATA4 loss-of-function mutations underlie familial tetralogy of fallot. Hum Mutat. 34:1662–1671. 2013.PubMed/NCBI View Article : Google Scholar | |
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A and Mohapatra B: Functionally significant, novel GATA4 variants are frequently associated with Tetralogy of Fallot. Hum Mutat. 39:1957–1972. 2018.PubMed/NCBI View Article : Google Scholar | |
Wei D, Bao H, Liu XY, Zhou N, Wang Q, Li RG, Xu YJ and Yang YQ: GATA5 loss-of-function mutations underlie tetralogy of fallot. Int J Med Sci. 10:34–42. 2013.PubMed/NCBI View Article : Google Scholar | |
Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, Yan B, Liu Y, Yang Y and Chen YH: A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 55:662–667. 2010.PubMed/NCBI View Article : Google Scholar | |
Wang J, Luo XJ, Xin YF, Liu Y, Liu ZM, Wang Q, Li RG, Fang WY, Wang XZ and Yang YQ: Novel GATA6 mutations associated with congenital ventricular septal defect or tetralogy of fallot. DNA Cell Biol. 31:1610–1617. 2012.PubMed/NCBI View Article : Google Scholar | |
Huang RT, Xue S, Xu YJ and Yang YQ: Somatic mutations in the GATA6 gene underlie sporadic tetralogy of Fallot. Int J Mol Med. 31:51–58. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu XY, Wang J, Zheng JH, Bai K, Liu ZM, Wang XZ, Liu X, Fang WY and Yang YQ: Involvement of a novel GATA4 mutation in atrial septal defects. Int J Mol Med. 28:17–23. 2011.PubMed/NCBI View Article : Google Scholar | |
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH and Yang YQ: A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol. 43(e20200142)2020.PubMed/NCBI View Article : Google Scholar | |
Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, et al: Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 104:1567–1573. 1999.PubMed/NCBI View Article : Google Scholar | |
Goldmuntz E, Geiger E and Benson DW: NKX2.5 mutations in patients with tetralogy of fallot. Circulation. 104:2565–2568. 2001.PubMed/NCBI View Article : Google Scholar | |
McElhinney DB, Geiger E, Blinder J, Benson DW and Goldmuntz E: NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 42:1650–1655. 2003.PubMed/NCBI View Article : Google Scholar | |
Baban A, Postma AV, Marini M, Trocchio G, Santilli A, Pelegrini M, Sirleto P, Lerone M, Albanese SB, Barnett P, et al: Identification of TBX5 mutations in a series of 94 patients with Tetralogy of Fallot. Am J Med Genet A. 164A:3100–3107. 2014.PubMed/NCBI View Article : Google Scholar | |
Amodio V, Tevy MF, Traina C, Ghosh TK and Capovilla M: Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases. Dev Dyn. 241:190–199. 2012.PubMed/NCBI View Article : Google Scholar | |
Charron F, Paradis P, Bronchain O, Nemer G and Nemer M: Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol. 19:4355–4365. 1999.PubMed/NCBI View Article : Google Scholar | |
Jiang Y and Evans T: The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol. 174:258–270. 1996.PubMed/NCBI View Article : Google Scholar | |
Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, et al: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 424:443–447. 2003.PubMed/NCBI View Article : Google Scholar | |
Durocher D, Charron F, Warren R, Schwartz RJ and Nemer M: The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16:5687–5696. 1997.PubMed/NCBI View Article : Google Scholar | |
Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M and Bitar F: A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat. 27:293–294. 2006.PubMed/NCBI View Article : Google Scholar | |
Martincorena I and Campbell PJ: Somatic mutation in cancer and normal cells. Science. 349:1483–1489. 2015.PubMed/NCBI View Article : Google Scholar | |
Maslov AY and Vijg J: Somatic mutation burden in relation to aging and functional life span: Implications for cellular reprogramming and rejuvenation. Curr Opin Genet Dev. 83(102132)2023.PubMed/NCBI View Article : Google Scholar | |
Vijg J and Dong X: Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell. 182:12–23. 2020.PubMed/NCBI View Article : Google Scholar | |
Erickson RP: Somatic gene mutation and human disease other than cancer: An update. Mutat Res. 705:96–106. 2010.PubMed/NCBI View Article : Google Scholar | |
Walsh C, Choudhury S and Chen MH: Landscape of somatic mutations in aging human heart muscle cells. Nat Aging. 2:686–687. 2022.PubMed/NCBI View Article : Google Scholar | |
Choudhury S, Huang AY, Kim J, Zhou Z, Morillo K, Maury EA, Tsai JW, Miller MB, Lodato MA, Araten S, et al: Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat Aging. 2:714–725. 2022.PubMed/NCBI View Article : Google Scholar | |
Salazar M, Consoli F, Villegas V, Caicedo V, Maddaloni V, Daniele P, Caianiello G, Pachón S, Nuñez F, Limongelli G, et al: Search of somatic GATA4 and NKX2.5 gene mutations in sporadic septal heart defects. Eur J Med Genet. 54:306–309. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang J, Lu Y, Chen H, Yin M, Yu T and Fu Q: Investigation of somatic NKX2-5, GATA4 and HAND1 mutations in patients with tetralogy of Fallot. Pathology. 43:322–326. 2011.PubMed/NCBI View Article : Google Scholar | |
Cheng C, Lin Y, Yang F, Wang W, Wu C, Qin J, Shao X and Zhou L: Mutational screening of affected cardiac tissues and peripheral blood cells identified novel somatic mutations in GATA4 in patients with ventricular septal defect. J Biomed Res. 25:425–430. 2011.PubMed/NCBI View Article : Google Scholar | |
Esposito G, Butler TL, Blue GM, Cole AD, Sholler GF, Kirk EP, Grossfeld P, Perryman BM, Harvey RP and Winlaw DS: Somatic mutations in NKX2–5, GATA4, and HAND1 are not a common cause of tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A. 155A:2416–2421. 2011.PubMed/NCBI View Article : Google Scholar | |
Yin J, Qian J, Dai G, Wang C, Qin Y, Xu T, Li Z, Zhang H and Yang S: Search of Somatic Mutations of NKX2-5 and GATA4 Genes in Chinese patients with sporadic congenital heart disease. Pediatr Cardiol. 40:17–22. 2019.PubMed/NCBI View Article : Google Scholar | |
Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R, Vaikunth S, Duncan SA, Aronow BJ, et al: Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 117:3198–3210. 2007.PubMed/NCBI View Article : Google Scholar | |
Pikkarainen S, Tokola H, Kerkelä R and Ruskoaho H: GATA transcription factors in the developing and adult heart. Cardiovasc Res. 63:196–207. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Toyofuku T, Kamei J and Hori M: GATA-4 regulates cardiac morphogenesis through transactivation of the N-cadherin gene. Biochem Biophys Res Commun. 312:1033–1038. 2003.PubMed/NCBI View Article : Google Scholar | |
Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C and Leiden JM: GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11:1048–1060. 1997.PubMed/NCBI View Article : Google Scholar | |
Molkentin JD, Lin Q, Duncan SA and Olson EN: Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11:1061–1072. 1997.PubMed/NCBI View Article : Google Scholar | |
Watt AJ, Battle MA, Li J and Duncan SA: GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 101:12573–12578. 2004.PubMed/NCBI View Article : Google Scholar | |
Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD and Orkin SH: Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 15:839–844. 2001.PubMed/NCBI View Article : Google Scholar | |
Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, Lucchesi PA, Pu WT, Srivastava D and Garg V: Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet. 8(e1002690)2012.PubMed/NCBI View Article : Google Scholar | |
Epstein JA and Parmacek MS: Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation. 112:592–597. 2005.PubMed/NCBI View Article : Google Scholar | |
Jiang JQ, Shen FF, Fang WY, Liu X and Yang YQ: Novel GATA4 mutations in lone atrial fibrillation. Int J Mol Med. 28:1025–1032. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng HZ, Jiang WF, Jiang JF and Yang YQ: A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. Int J Mol Med. 33:654–660. 2014.PubMed/NCBI View Article : Google Scholar |