1
|
Johnson RJ, Bakris GL, Borghi C, Chonchol
MB, Feldman D, Lanaspa MA, Merriman TR, Moe OW, Mount DB, Sanchez
Lozada LG, et al: Hyperuricemia, acute and chronic kidney disease,
hypertension, and cardiovascular disease: Report of a scientific
workshop organized by the National Kidney Foundation. Am J Kidney
Dis. 71:851–865. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
American Diabetes Association. 2.
Classification and diagnosis of diabetes: Standards of medical care
in diabetes-2020. Diabetes Care. 43 (Suppl 1):S14–S31.
2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Jia G, Hill MA and Sowers JR: Diabetic
cardiomyopathy: An update of mechanisms contributing to this
clinical entity. Circ Res. 122:624–638. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Kiss A, Arnold Z, Aykac I, Fee AJ,
Hallström S, Balogh F, Szekeres M, Szabo PL, Nagel F, Hamdani N, et
al: Tenascin C deficiency attenuates cardiac dysfunction,
endothelial dysfunction and fibrosis in diabetic cardiomyopathy
mice. J Mol Cell Cardiol. 173 (Suppl)(S99)2022.
|
5
|
Cheng YJ, Kanaya AM, Araneta MRG, Saydah
SH, Kahn HS, Gregg EW, Fujimoto WY and Imperatore G: Prevalence of
diabetes by race and ethnicity in the United States, 2011-2016.
JAMA. 322:2389–2398. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Frąk W, Wojtasińska A, Lisińska W,
Młynarska E, Franczyk B and Rysz J: Pathophysiology of
cardiovascular diseases: New insights into molecular mechanisms of
atherosclerosis, arterial hypertension, and coronary artery
disease. Biomedicines. 10(1938)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Weiner DE, Tighiouart H, Amin MG, Stark
PC, MacLeod B, Griffith JL, Salem DN, Levey AS and Sarnak MJ:
Chronic kidney disease as a risk factor for cardiovascular disease
and all-cause mortality: A pooled analysis of community-based
studies. J Am Soc Nephrol. 15:1307–1315. 2004.PubMed/NCBI View Article : Google Scholar
|
8
|
Ford I, Bezlyak V, Stott DJ, Sattar N,
Packard CJ, Perry I, Buckley BM, Jukema JW, de Craen AJ, Westendorp
RG and Shepherd J: Reduced glomerular filtration rate and its
association with clinical outcome in older patients at risk of
vascular events: Secondary analysis. PLoS Med.
6(e16)2009.PubMed/NCBI View Article : Google Scholar
|
9
|
Somani YB, Uthman L, Aengevaeren VL,
Rodwell L, Lip GYH, Hopman MTE, Van Royen N, Eijsvogels TMH and
Thijssen DHJ: Exercise-induced release of cardiac troponin is
attenuated with repeated bouts of exercise: Impact of
cardiovascular disease and risk factors. Am J Physiol Heart Circ
Physiol. 324:H519–H524. 2023.PubMed/NCBI View Article : Google Scholar
|
10
|
Guo H, Wang C, Jiang B, Ge S, Cai J, Zhou
Y, Ying R, Zha K, Zhou J, Wang N, et al: Association of insulin
resistance and β-cell function with bone turnover biomarkers in
dysglycemia patients. Front Endocrinol (Lausanne).
12(554604)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Negeem Z, Moneim AA, Mahmoud B, Ahmed AE,
Abd El-Hameed AM, Eskandrani AA and Hasona NA: The implication of
miR-200a and miR-132 expression and their correlations with
NF-κB/TNF-alpha signaling in adults with diabetic nephropathy.
Saudi J Biol Sci. 31(103975)2024.PubMed/NCBI View Article : Google Scholar
|
12
|
Mikuda N, Kolesnichenko M, Beaudette P,
Popp O, Uyar B, Sun W, Tufan AB, Perder B, Akalin A, Chen W, et al:
The IκB kinase complex is a regulator of mRNA stability. EMBO J.
37(e98658)2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Battineni G, Sagaro GG, Chintalapudi N,
Amenta F, Tomassoni D and Tayebati SK: Impact of obesity-induced
inflammation on cardiovascular diseases (CVD). Int J Mol Sci.
22(4798)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Pina T, Corrales A, Lopez-Mejias R,
Armesto S, Gonzalez-Lopez MA, Gómez-Acebo I, Ubilla B,
Remuzgo-Martínez S, Gonzalez-Vela MC, Blanco R, et al: Anti-tumor
necrosis factor-alpha therapy improves endothelial function and
arterial stiffness in patients with moderate to severe psoriasis: A
6-month prospective study. J Dermatol. 43:1267–1272.
2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Kim J, Cha YN and Surh YJ: A protective
role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in
inflammatory disorders. Mutat Res. 690:12–23. 2010.PubMed/NCBI View Article : Google Scholar
|
16
|
Hutyra M, Paleček T and Hromádka M: The
use of echocardiography in acute cardiovascular care. Summary of
the document prepared by the Czech society of cardiology. Cor et
Vasa. 60:e70–e88. 2018.
|
17
|
Paolillo S, Marsico F, Prastaro M, Renga
F, Esposito L, De Martino F, Di Napoli P, Esposito I, Ambrosio A,
Ianniruberto M, et al: Diabetic cardiomyopathy: Definition,
diagnosis, and therapeutic implications. Heart Fail Clin.
15:341–347. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Cook CH, Praba AC, Beery PR and Martin LC:
Transthoracic echocardiography is not cost-effective in critically
ill surgical patients. J Trauma. 52:280–284. 2002.PubMed/NCBI View Article : Google Scholar
|
19
|
Tousoulis D, Papageorgiou N, Androulakis
E, Siasos G, Latsios G, Tentolouris K and Stefanadis C: Diabetes
mellitus-associated vascular impairment: Novel circulating
biomarkers and therapeutic approaches. J Am Coll Cardiol.
62:667–676. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Park EG, Ha H, Lee DH, Kim WR, Lee YJ, Bae
WH and Kim AH: Genomic analyses of non-coding RNAs overlapping
transposable elements and its implication to human diseases. Int J
Mol Sci. 23(8950)2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Dave VP, Ngo TA, Pernestig A-K, Tilevik D,
Kant K, Nguyen T, Wolff A and Bang DD: MicroRNA amplification and
detection technologies: Opportunities and challenges for point of
care diagnostics. Lab Invest. 99:452–469. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Lekka E and Hall J: Noncoding RNA s in
disease. FEBS Lett. 592:2884–2900. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Soni DK and Biswas R: Role of non-coding
RNAs in post-transcriptional regulation of lung diseases. Front
Genet. 12(767348)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Shi L, Zhang R, Li T, Han X, Yuan N, Jiang
L, Zhou H and Xu S: Decreased miR-132 plays a crucial role in
diabetic encephalopathy by regulating the GSK-3β/Tau pathway. Aging
(Albany NY). 13:4590–4604. 2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Civantos E, Bosch E, Ramirez E, Zhenyukh
O, Egido J, Lorenzo O and Mas S: Sitagliptin ameliorates oxidative
stress in experimental diabetic nephropathy by diminishing the
miR-200a/Keap-1/Nrf2 antioxidant pathway. Diabetes Metab Syndr
Obes. 10:207–222. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Bijkerk R, de Bruin RG, van Solingen C,
van Gils JM, Duijs JMGJ, van der Veer EP, Rabelink TJ, Humphreys BD
and van Zonneveld AJ: Silencing of microRNA-132 reduces renal
fibrosis by selectively inhibiting myofibroblast proliferation.
Kidney Int. 89:1268–1280. 2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Foinquinos A, Batkai S, Genschel C,
Viereck J, Rump S, Gyöngyösi M, Traxler D, Riesenhuber M,
Spannbauer A, Lukovic D, et al: Preclinical development of a
miR-132 inhibitor for heart failure treatment. Nat Commun.
11(633)2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Ning F, Qiao Q, Tuomilehto J, Hammar N, Ho
S, Söderberg S, Zimmet PZ, Shaw JE, Nakagami T, Mohan V, et al:
Does abnormal insulin action or insulin secretion explain the
increase in prevalence of impaired glucose metabolism with age in
populations of different ethnicities? Diabetes Metab Res Rev.
26:245–253. 2010.PubMed/NCBI View Article : Google Scholar
|
29
|
Kumarswamy R and Thum T: Non-coding RNAs
in cardiac remodeling and heart failure. Circ Res. 113:676–689.
2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Matkovich SJ, Wang W, Tu Y, Eschenbacher
WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM and Dorn GW II:
MicroRNA-133a protects against myocardial fibrosis and modulates
electrical repolarization without affecting hypertrophy in
pressure-overloaded adult hearts. Circ Res. 106:166–175.
2010.PubMed/NCBI View Article : Google Scholar
|
31
|
Nandi SS, Duryee MJ, Shahshahan HR, Thiele
GM, Anderson DR and Mishra PK: Induction of autophagy markers is
associated with attenuation of miR-133a in diabetic heart failure
patients undergoing mechanical unloading. Am J Transl Res.
7:683–696. 2015.PubMed/NCBI
|
32
|
Krenz M and Robbins J: Impact of
beta-myosin heavy chain expression on cardiac function during
stress. J Am Coll Cardiol. 44:2390–2397. 2004.PubMed/NCBI View Article : Google Scholar
|
33
|
Barrera-Chimal J and Jaisser F:
Pathophysiologic mechanisms in diabetic kidney disease: A focus on
current and future therapeutic targets. Diabetes Obes Metab. 22
(Suppl 1):S16–S31. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Kato M, Wang M, Chen Z, Bhatt K, Oh HJ,
Lanting L, Deshpande S, Jia Y, Lai JY, O'Connor CL, et al: An
endoplasmic reticulum stress-regulated lncRNA hosting a microRNA
megacluster induces early features of diabetic nephropathy. Nat
Commun. 7(12864)2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Allison SJ: Diabetic nephropathy: A lncRNA
and miRNA megacluster in diabetic nephropathy. Nat Rev Nephrol.
12(713)2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhu Y, Liu C and Hallajzadeh J:
Understanding the roles of non-coding RNAs and exosomal non-coding
RNAs in diabetic nephropathy. Curr Mol Med: Apr 5, 2024 (Epub ahead
of print).
|
37
|
Lan H, Lu H, Wang X and Jin H: MicroRNAs
as potential biomarkers in cancer: Opportunities and challenges.
Biomed Res Int. 2015(125094)2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Solier C and Langen H: Antibody-based
proteomics and biomarker research-current status and limitations.
Proteomics. 14:774–783. 2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Levey AS, Bosch JP, Lewis JB, Greene T,
Rogers N and Roth D: A more accurate method to estimate glomerular
filtration rate from serum creatinine: A new prediction equation.
Modification of diet in renal disease study group. Ann Intern Med.
130:461–470. 1999.PubMed/NCBI View Article : Google Scholar
|
40
|
Skiba JH, Bansal AD, Peck Palmer OM and
Johnstone DB: Case report: Clinical consequences of adjusting
estimated GFR for black race. Gen Intern Med. 37:958–961.
2022.PubMed/NCBI View Article : Google Scholar
|
41
|
Inker LA, Eneanya ND, Coresh J, Tighiouart
H, Wang D, Sang Y, Crews DC, Doria A, Estrella MM, Froissart M, et
al: New creatinine- and cystatin C-based equations to estimate GFR
without race. N Engl J Med. 385:1737–1749. 2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Ayeldeen G, Nassar Y, Ahmed H, Shaker O
and Gheita T: Possible use of miRNAs-146a and -499 expression and
their polymorphisms as diagnostic markers for rheumatoid arthritis.
Mol Cell Biochem. 449:145–156. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Shaker OG, Abdelaleem OO, Mahmoud RH,
Abdelghaffar NK, Ahmed TI, Said OM and Zaki OM: Diagnostic and
prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in
diabetic retinopathy. IUBMB Life. 71:310–320. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Pratama MY, Cavalletto L, Tiribelli C,
Chemello L and Pascut D: Selection and validation of miR-1280 as a
suitable endogenous normalizer for qRT-PCR analysis of serum
microRNA expression in hepatocellular carcinoma. Sci Rep.
10(3128)2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
46
|
Kovesdy CP: Management of hyperkalaemia in
chronic kidney disease. Nat Rev Nephrol. 10:653–662.
2014.PubMed/NCBI View Article : Google Scholar
|
47
|
Liamis G, Liberopoulos E, Barkas F and
Elisaf M: Diabetes mellitus and electrolyte disorders. World J Clin
Cases. 2:488–496. 2014.PubMed/NCBI View Article : Google Scholar
|
48
|
Shu A, Du Q, Chen J, Gao Y, Zhu Y, Lv G,
Lu J, Chen Y and Xu H: Catalpol ameliorates endothelial dysfunction
and inflammation in diabetic nephropathy via suppression of
RAGE/RhoA/ROCK signaling pathway. Chem Biol Interact.
348(109625)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Davis KD, Aghaeepour N, Ahn AH, Angst MS,
Borsook D, Brenton A, Burczynski ME, Crean C, Edwards R,
Gaudilliere B, et al: Discovery and validation of biomarkers to aid
the development of safe and effective pain therapeutics: Challenges
and opportunities. Nat Rev Neurol. 16:381–400. 2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Chen C, Lin X, Lin R, Huang H and Lu F: A
high serum creatine kinase (CK)-MB-to-total-CK ratio in patients
with pancreatic cancer: A novel application of a traditional marker
in predicting malignancy of pancreatic masses? World J Surg Oncol.
21(13)2023.PubMed/NCBI View Article : Google Scholar
|
51
|
Hsieh YS, Yeh MC, Lin YY, Weng SF, Hsu CH,
Huang CL, Lin YP and Han AY: Is the level of serum lactate
dehydrogenase a potential biomarker for glucose monitoring with
type 2 diabetes mellitus? Front Endocrinol (Lausanne).
13(1099805)2022.PubMed/NCBI View Article : Google Scholar
|
52
|
Aydogdu U, Yildiz R, Guzelbektes H, Coskun
A and Sen I: Cardiac biomarkers in premature calves with
respiratory distress syndrome. Acta Vet Hung. 64:38–46.
2016.PubMed/NCBI View Article : Google Scholar
|
53
|
Apak I, Iltumur K, Taman Y and Kaya N:
Serum cardiac troponin T levels as an indicator of myocardial
injury in ischemic and hemorrhagic stroke patients. Tohoku J Exp
Med. 205:93–101. 2005.PubMed/NCBI View Article : Google Scholar
|
54
|
Thygesen K, Alpert JS, Jaffe AS, Chaitman
BR, Bax JJ, Morrow DA and White HD: Executive Group on behalf of
the Joint European Society of Cardiology (ESC)/American College of
Cardiology (ACC)/American Heart Association (AHA)/World Heart
Federation (WHF) Task Force for the Universal Definition of
Myocardial Infarction. Fourth universal definition of myocardial
infarction (2018). Circulation. 138:e618–e651. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Tervaert TWC, Mooyaart AL, Amann K, Cohen
AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer
E, et al: Pathologic classification of diabetic nephropathy. J Am
Soc Nephrol. 21:556–563. 2010.PubMed/NCBI View Article : Google Scholar
|
56
|
Ozougwu J, Obimba K, Belonwu C and
Unakalamba C: The pathogenesis and pathophysiology of type 1 and
type 2 diabetes mellitus. J Physiol Pathophysiol. 4:46–57.
2013.
|
57
|
Yaraee R, Ghazanfari T, Ebtekar M,
Ardestani SK, Rezaei A, Kariminia A, Faghihzadeh S, Mostafaie A,
Vaez-Mahdavi MR, Mahmoudi M, et al: Alterations in serum levels of
inflammatory cytokines (TNF, IL-1alpha, IL-1beta and IL-1Ra) 20
years after sulfur mustard exposure: Sardasht-Iran cohort study.
Int Immunopharmacol. 9:1466–1470. 2009.PubMed/NCBI View Article : Google Scholar
|
58
|
Pickup JC and Crook MA: Is type II
diabetes mellitus a disease of the innate immune system?
Diabetologia. 41:1241–1248. 1998.PubMed/NCBI View Article : Google Scholar
|
59
|
Abou-Elela DH, Emara MM, Abo El-Khair NT,
El-Edel RH and Fathy WM: Role of tumor necrosis factor alpha in
type 2 diabetic nephropathy. Menoufia Med J. 33:920–925. 2020.
|
60
|
Wang Y, Li L, Moore BT, Peng XH, Fang X,
Lappe JM, Recker RR and Xiao P: MiR-133a in human circulating
monocytes: A potential biomarker associated with postmenopausal
osteoporosis. PLoS One. 7(e34641)2012.PubMed/NCBI View Article : Google Scholar
|
61
|
Small EM and Olson EN: Pervasive roles of
microRNAs in cardiovascular biology. Nature. 469:336–342.
2011.PubMed/NCBI View Article : Google Scholar
|
62
|
De Rosa S, Arcidiacono B, Chiefari E,
Brunetti A, Indolfi C and Foti DP: Type 2 diabetes mellitus and
cardiovascular disease: Genetic and epigenetic links. Front
Endocrinol (Lausanne). 9(2)2018.PubMed/NCBI View Article : Google Scholar
|
63
|
Wang CY, Tsai PY, Chen TY, Tsai HL, Kuo PL
and Su MT: Elevated miR-200a and miR-141 inhibit endocrine
gland-derived vascular endothelial growth factor expression and
ciliogenesis in preeclampsia. J Physiol. 597:3069–3083.
2019.PubMed/NCBI View Article : Google Scholar
|
64
|
Chen J, Cao W, Asare PF, Lv M, Zhu Y, Li
L, Wei J, Gao H, Zhang H, Mao H, et al: Amelioration of cardiac
dysfunction and ventricular remodeling after myocardial infarction
by danhong injection are critically contributed by
anti-TGF-β-mediated fibrosis and angiogenesis mechanisms. J
Ethnopharmacol. 194:559–570. 2016.PubMed/NCBI View Article : Google Scholar
|
65
|
Zhang CJ, Huang Y, Lu JD, Lin J, Ge ZR and
Huang H: Retracted: Upregulated microRNA-132 rescues cardiac
fibrosis and restores cardiocyte proliferation in dilated
cardiomyopathy through the phosphatase and tensin homolog-mediated
PI3K/Akt signal transduction pathway. J Cell Biochem.
120:1232–1244. 2019.PubMed/NCBI View Article : Google Scholar
|
66
|
Wang G, Wang R, Ruan Z, Liu L, Li Y and
Zhu L: MicroRNA-132 attenuated cardiac fibrosis in myocardial
infarction-induced heart failure rats. Biosci Rep.
40(BSR20201696)2020.PubMed/NCBI View Article : Google Scholar
|
67
|
Li N, Zhou H and Tang Q: miR-133: A
suppressor of cardiac remodeling? Front Pharmacol.
9(903)2018.PubMed/NCBI View Article : Google Scholar
|
68
|
Clauss S, Wakili R, Hildebrand B, Kääb S,
Hoster E, Klier I, Martens E, Hanley A, Hanssen H, Halle M and
Nickel T: MicroRNAs as biomarkers for acute atrial remodeling in
marathon runners (the miRathon study-a sub-study of the munich
marathon study). PLoS One. 11(e0148599)2016.PubMed/NCBI View Article : Google Scholar
|
69
|
Mooren FC, Viereck J, Krüger K and Thum T:
Circulating microRNAs as potential biomarkers of aerobic exercise
capacity. Am J Physiol Heart Circ Physiol. 306:H557–H563.
2014.PubMed/NCBI View Article : Google Scholar
|
70
|
Feng B, Chen S, George B, Feng Q and
Chakrabarti S: miR133a regulates cardiomyocyte hypertrophy in
diabetes. Diabetes Metab Res Rev. 26:40–49. 2010.PubMed/NCBI View Article : Google Scholar
|
71
|
Kambis TN, Shahshahan HR, Kar S, Yadav SK
and Mishra PK: Transgenic expression of miR-133a in the diabetic
akita heart prevents cardiac remodeling and cardiomyopathy. Front
Cardiovasc Med. 6(45)2019.PubMed/NCBI View Article : Google Scholar
|
72
|
Muñoz JP, Collao A, Chiong M, Maldonado C,
Adasme T, Carrasco L, Ocaranza P, Bravo R, Gonzalez L, Díaz-Araya
G, et al: The transcription factor MEF2C mediates cardiomyocyte
hypertrophy induced by IGF-1 signaling. Biochem Biophys Res Commun.
388:155–160. 2009.PubMed/NCBI View Article : Google Scholar
|