Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review)
- Authors:
- Margherita Cerrone
- Monica Cantile
- Francesca Collina
- Laura Marra
- Giuseppina Liguori
- Renato Franco
- Annarosaria De Chiara
- Gerardo Botti
-
Affiliations: Pathology Unit, INT Pascale Foundation, I-80131 Naples, Italy - Published online on: April 4, 2014 https://doi.org/10.3892/ijmm.2014.1726
- Pages: 1379-1391
-
Copyright: © Cerrone et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Dei Tos AP and Dal Cin P: The role of cytogenetics in the classification of soft tissue tumours. Virchows Arch. 431:83–94. 1997.PubMed/NCBI | |
Bennicelli JL and Barr FG: Genetics and the biologic basis of sarcomas. Curr Opin Oncol. 11:267–274. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fletcher Christopher DM, Unni K Krishnan and Mertens Fredrik: WHO: Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press; Lyon: 2002 | |
Gisselsson D, Hibbard MK, Dal Cin P, Sciot R, Hsi BL, Kozakewich HP and Fletcher JA: PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol. 159:955–962. 2001. View Article : Google Scholar : PubMed/NCBI | |
Martins C, Fonseca I, Roque L, Pereira T, Ribeiro C, Bullerdiek J and Soares J: PLAG1 gene alterations in salivary gland pleomorphic adenoma and carcinoma ex-pleomorphic adenoma: a combined study using chromosome banding, in situ hybridization and immunocytochemistry. Mod Pathol. 18:1048–1055. 2005. View Article : Google Scholar | |
Turc-Carel C, Limon J, Dal Cin P, Rao U, Karakousis C and Sandberg AA: Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet. 23:291–309. 1986. View Article : Google Scholar : PubMed/NCBI | |
Paulien S, Turc-Carel C, Dal Cin P, Jani-Sait S, Sreekantaiah C, Leong SP, Vogelstein B, Kinzler KW, Sandberg AA and Gemmill RM: Myxoid liposarcoma with t(12;16) (q13;p11) contains site-specific differences in methylation patterns surrounding a zinc-finger gene mapped to the breakpoint region on chromosome 12. Cancer Res. 50:7902–7907. 1990. | |
Mezzelani A, Sozzi G, Pierotti MA and Pilotti S: Rapid differential diagnosis of myxoid liposarcoma by fluorescence in situ hybridisation on cytological preparations. Clin Mol Pathol. 49:308–309. 1996. View Article : Google Scholar : PubMed/NCBI | |
Aoki T, Hisaoka M, Kouho H, Hashimoto H and Nakata H: Interphase cytogenetic analysis of myxoid soft tissue tumors by fluorescence in situ hybridization and DNA flow cytometry using paraffin-embedded tissue. Cancer. 79:284–293. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sozzi G, Minoletti F, Miozzo M, Sard L, Musso K, Azzarelli A, Pierotti MA and Pilotti S: Relevance of cytogenetic and fluorescent in situ hybridization analyses in the clinical assessment of soft tissue sarcoma. Hum Pathol. 28:134–142. 1997. View Article : Google Scholar : PubMed/NCBI | |
Schoenmakers EF, Kools PF, Mols R, Kazmierczak B, Bartnitzke S, Bullerdiek J, Dal Cin P, De Jong PJ, Van den Berghe H and Van de Ven WJ: Physical mapping of chromosome 12q breakpoints in lipoma, pleomorphic salivary gland adenoma, uterine leiomyoma, and myxoid liposarcoma. Genomics. 20:210–222. 1994. View Article : Google Scholar | |
Gisselsson D, Mandahl N, Pålsson E, Gorunova L and Höglund M: Locus-specific multifluor FISH analysis allows physical characterization of complex chromosome abnormalities in neoplasia. Genes Chromosomes Cancer. 28:347–352. 2000. View Article : Google Scholar | |
Downs-Kelly E, Goldblum JR, Patel RM, Weiss SW, Folpe AL, Mertens F, Hartke M, Tubbs RR and Skacel M: The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 32:8–13. 2008. View Article : Google Scholar : PubMed/NCBI | |
Narendra S, Valente A, Tull J and Zhang S: DDIT3 gene break-apart as a molecular marker for diagnosis of myxoid liposarcoma - assay validation and clinical experience. Diagn Mol Pathol. 20:218–224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, Willén H, Rydholm A and Mitelman F: Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 5:278–285. 1992. View Article : Google Scholar : PubMed/NCBI | |
Crozat A, Aman P, Mandahl N and Ron D: Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 363:640–644. 1993. View Article : Google Scholar : PubMed/NCBI | |
Knight JC, Renwick PJ, Dal Cin P, Van den Berghe H and Fletcher CD: Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res. 55:24–27. 1995.PubMed/NCBI | |
Yang X, Nagasaki K, Egawa S, Maruyama K, Futami H, Tsukada T, Yokoyama R, Beppu Y, Fukuma H, Shimoda T, Mukai K, Yabe H, Hanaoka I, Yabe Y and Yamaguchi K: FUS/TLS-CHOP chimeric transcripts in liposarcoma tissues. Jpn J Clin Oncol. 25:234–239. 1995.PubMed/NCBI | |
Panagopoulos I, Mandahl N, Mitelman F and Aman P: Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene. 11:1133–1137. 1995. | |
Willeke F, Ridder R, Mechtersheimer G, Schwarzbach M, Duwe A, Weitz J, Lehnert T, Herfarth C and von Knebel Doeberitz M: Analysis of FUS-CHOP fusion transcripts in different types of soft tissue liposarcoma and their diagnostic implications. Clin Cancer Res. 4:1779–1784. 1998.PubMed/NCBI | |
Kanoe H, Nakayama T, Hosaka T, Murakami H, Yamamoto H, Nakashima Y, Tsuboyama T, Nakamura T, Ron D, Sasaki MS and Toguchida J: Characteristics of genomic breakpoints in TLS-CHOP translocations in liposarcomas suggest the involvement of Translin and topoisomerase II in the process of translocation. Oncogene. 18:721–729. 1999. View Article : Google Scholar : PubMed/NCBI | |
Huang HY and Antonescu CR: Molecular variability of TLS-CHOP structure shows no significant impact on the level of adipogenesis: a comparative ultrastructural and RT-PCR analysis of 14 cases of myxoid/round cell liposarcomas. Ultrastruct Pathol. 27:217–226. 2003. View Article : Google Scholar | |
Panagopoulos I, Aman P, Mertens F, Mandahl N, Rydholm A, Bauer HF and Mitelman F: Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Genes Chromosomes Cancer. 17:102–107. 1996. View Article : Google Scholar : PubMed/NCBI | |
Rivero ER, Mesquita RA, de Sousa SC and Nunes FD: Detection of TLS/FUS-CHOP fusion transcripts in a case of oral liposarcoma. Ann Diagn Pathol. 10:36–38. 2006. View Article : Google Scholar : PubMed/NCBI | |
Panagopoulos I, Lassen C, Isaksson M, Mitelman F, Mandahl N and Aman P: Characteristic sequence motifs at the breakpoints of the hybrid genes FUS/CHOP, EWS/CHOP and FUS/ERG in myxoid liposarcoma and acute myeloid leukemia. Oncogene. 15:1357–1362. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hisaoka M, Tsuji S, Morimitsu Y, Hashimoto H, Shimajiri S, Komiya S and Ushijima M: Detection of TLS/FUS-CHOP fusion transcripts in myxoid and round cell liposarcomas by nested reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Diagn Mol Pathol. 7:96–101. 1998. View Article : Google Scholar | |
Schwarzbach MH, Koesters R, Germann A, Mechtersheimer G, Geisbill J and Winkler S: Comparable transforming capacities and differential gene expression patterns of variant FUS/CHOP fusion transcripts derived from soft tissue liposarcomas. Oncogene. 23:6798–6805. 2004. View Article : Google Scholar | |
Patil N, Abba M, Hödl P, Schwarzbach M and Allgayer H: A real time PCR based approach for the quantitative detection of FUS-CHOP fusion transcripts in human liposarcoma. Adv Med Sci. 57:37–45. 2012. View Article : Google Scholar : PubMed/NCBI | |
Borjigin N, Ohno S, Wu W, Tanaka M, Suzuki R, Fujita K, Takanashi M, Oikawa K, Goto T, Motoi T, Kosaka T, Yamamoto K and Kuroda M: TLS-CHOP represses miR-486 expression, inducing upregulation of a metastasis regulator PAI-1 in human myxoid liposarcoma. Biochem Biophys Res Commun. 427:355–360. 2012. View Article : Google Scholar | |
Suzuki K, Matsui Y, Endo K, Kubo T, Hasegawa T, Kimura T, Ohtani O and Yasui N: Myxoid liposarcoma with EWS-CHOP type 1 fusion gene. Anticancer Res. 30:4679–4683. 2010.PubMed/NCBI | |
Powers MP, Wang WL, Hernandez VS, Patel KS, Lev DC, Lazar AJ and López-Terrada DH: Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 23:1307–1315. 2010. View Article : Google Scholar | |
Suzuki K, Matsui Y, Hashimoto N, et al: Variation in myxoid liposarcoma: Clinicopathological examination of four cases with detectable TLS-CHOP or EWS-CHOP fusion transcripts whose histopathological diagnosis was other than myxoid liposarcoma. Oncol Lett. 3:293–296. 2012. | |
Bourgeois JM, Knezevich SR, Mathers JA and Sorensen PH: Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 24:937–246. 2000. View Article : Google Scholar : PubMed/NCBI | |
Knezevich SR, McFadden DE, Tao W, Lim JF and Sorensen PH: A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 18:184–187. 1998. View Article : Google Scholar : PubMed/NCBI | |
Adem C, Gisselsson D, Dal Cin P and Nascimento AG: ETV6 rearrangements in patients with infantile fibrosarcomas and congenital mesoblastic nephromas by fluorescence in situ hybridization. Mod Pathol. 14:1246–1251. 2001. View Article : Google Scholar : PubMed/NCBI | |
Morerio C, Rapella A, Rosanda C, Tassano E, Conte M, Gambini C and Panarello C: Differential diagnosis of congenital fibrosarcoma. Cancer Genet Cytogenet. 152:167–168. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mariño-Enríquez A, Li P, Samuelson J, Rossi MR and Reyes-Múgica M: Congenital fibrosarcoma with a novel complex 3-way translocation t(12;15;19) and unusual histologic features. Hum Pathol. 39:1844–1848. 2008.PubMed/NCBI | |
Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE and Sorensen PH: ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58:5046–5048. 1998.PubMed/NCBI | |
Sheng WQ, Hisaoka M, Okamoto S, Tanaka A, Meis-Kindblom JM, Kindblom LG, Ishida T, Nojima T and Hashimoto H: Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol. 115:348–355. 2001. View Article : Google Scholar | |
Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, Perez-Atayde AR and Fletcher JA: Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 153:1451–1458. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ramphal R, Manson D, Viero S, Zielenska M, Gerstle T and Pappo A: Retroperitoneal infantile fibrosarcoma: clinical, molecular, and therapeutic aspects of an unusual tumor. Pediatr Hematol Oncol. 20:635–642. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rizkalla H, Wildgrove H, Quinn F, Capra M and O’Sullivan MJ: Congenital fibrosarcoma of the ileum: case report with molecular confirmation and literature review. Fetal Pediatr Pathol. 30:156–160. 2011. View Article : Google Scholar : PubMed/NCBI | |
Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O’Brien KP, Kedra D, Fransson I, Guilbaud C and Dumanski JP: Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 15:95–98. 1997. View Article : Google Scholar : PubMed/NCBI | |
Navarro M, Simon MP, Migeon C, Turc-Carel C and Pedeutour F: COL1A1-PDGFB fusion in a ring chromosome 4 found in a dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 23:263–266. 1998. View Article : Google Scholar : PubMed/NCBI | |
Salgado R, Llombart B, M Pujol R, Fernández-Serra A, Sanmartín O, Toll A, Rubio L, Segura S, Barranco C, Serra-Guillén C, Yébenes M, Salido M, Traves V, Monteagudo C, Sáez E, Hernández T, de Álava E, Llombart-Bosch A, Solé F, Guillén C, Espinet B and López-Guerrero JA: Molecular diagnosis of dermatofibrosarcoma protuberans: a comparison between reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization methodologies. Genes Chromosomes Cancer. 50:510–517. 2011. View Article : Google Scholar | |
Segura S, Salgado R, Toll A, Martín-Ezquerra G, Yébenes M, Sáez A, Solé F, Barranco C, Umbert P, Espinet B and Pujol RM: Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol. 42:176–184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Walluks K, Chen Y, Woelfel C, Yang L, Cui T, Seliger C, Geier C, Knösel T, Hauke S and Petersen I: Molecular and clinicopathological analysis of dermatofibrosarcoma protuberans. Pathol Res Pract. 209:30–35. 2013. View Article : Google Scholar : PubMed/NCBI | |
O’Brien KP, Seroussi E, Dal Cin P, Sciot R, Mandahl N, Fletcher JA, Turc-Carel C and Dumanski JP: Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer. 23:187–193. 1998.PubMed/NCBI | |
Macarenco RS, Zamolyi R, Franco MF, Nascimento AG, Abott JJ, Wang X, Erickson-Johnson MR and Oliveira AM: Genomic gains of COL1A1-PDFGB occur in the histologic evolution of giant cell fibroblastoma into dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 47:260–265. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nishio J, Iwasaki H, Ohjimi Y, Ishiguro M, Isayama T, Naito M, Kaneko Y and Kikuchi M: Supernumerary ring chromosomes in dermatofibrosarcoma protuberans may contain sequences from 8q11.2-qter and 17q21-qter: a combined cytogenetic and comparative genomic hybridization study. Cancer Genet Cytogenet. 129:102–106. 2001. View Article : Google Scholar | |
Kaur S, Vauhkonen H, Böhling T, Mertens F, Mandahl N and Knuutila S: Gene copy number changes in dermatofibrosarcoma protuberans - a fine-resolution study using array comparative genomic hybridization. Cytogenet Genome Res. 115:283–288. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Hisaoka M, Shimajiri S, Morimitsu Y and Hashimoto H: Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol. 8:113–119. 1999. View Article : Google Scholar | |
Szollosi Z, Scholtz B, Egervari K and Nemes Z: Transformed dermatofibrosarcoma protuberans: real time polymerase chain reaction detection of COL1A1-PDGFB fusion transcripts in sarcomatous areas. J Clin Pathol. 60:190–194. 2007. View Article : Google Scholar | |
Craver R, Dewenter T, Ebran N and Pedeutour F: COL1A1-PDGFB fusion in a pediatric Bednar tumor with 2 copies of a der(22)t(17;22). Cancer Genet Cytogenet. 168:155–157. 2006. View Article : Google Scholar : PubMed/NCBI | |
Patel KU, Szabo SS, Hernandez VS, Prieto VG, Abruzzo LV, Lazar AJ and López-Terrada D: Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol. 39:184–193. 2008. | |
Gibson S, Sebire NJ and Anderson J: Platelet-derived growth factor receptors and ligands are up-regulated in paediatric fibromatoses. Histopathology. 51:752–757. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takahira T, Oda Y, Tamiya S, Higaki K, Yamamoto H, Kobayashi C, Izumi T, Tateishi N, Iwamoto Y and Tsuneyoshi M: Detection of COL1A1-PDGFB fusion transcripts and PDGFB/PDGFRB mRNA expression in dermatofibrosarcoma protuberans. Mod Pathol. 20:668–675. 2007. View Article : Google Scholar : PubMed/NCBI | |
Muchemwa FC, Wakasugi S, Honda Y and Ihn H: PDGFB quantification is a useful tool in the diagnosis of dermatofibrosarcoma protuberans: a study of 10 cases. Clin Exp Dermatol. 35:295–299. 2010. View Article : Google Scholar : PubMed/NCBI | |
Engel R, Ritterbach J, Schwabe D and Lampert F: Chromosome translocation (2;13)(q37;q14) in a disseminated alveolar rhabdomyosarcoma. Eur J Pediatr. 148:69–71. 1988. View Article : Google Scholar : PubMed/NCBI | |
Mehra S, de la Roza G, Tull J, Shrimpton A, Valente A and Zhang S: Detection of FOXO1 (FKHR) gene break-apart by fluorescence in situ hybridization in formalin-fixed, paraffin-embedded alveolar rhabdomyosarcomas and its clinicopathologic correlation. Diagn Mol Pathol. 17:14–20. 2008. | |
Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, Halligan GE and de Chadarévian JP: FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol. 24:1327–1335. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biegel JA, Nycum LM, Valentine V, Barr FG and Shapiro DN: Detection of the t(2;13)(q35;q14) and PAX3-FKHR fusion in alveolar rhabdomyosarcoma by fluorescence in situ hybridization. Genes Chromosomes Cancer. 12:186–192. 1995. View Article : Google Scholar : PubMed/NCBI | |
McManus AP, O’Reilly MA, Jones KP, Gusterson BA, Mitchell CD, Pinkerton CR and Shipley JM: Interphase fluorescence in situ hybridization detection of t(2;13)(q35;q14) in alveolar rhabdomyosarcoma - a diagnostic tool in minimally invasive biopsies. J Pathol. 178:410–414. 1996. View Article : Google Scholar : PubMed/NCBI | |
Matsumura T, Yamaguchi T, Seki K, Shimoda T, Wada T, Yamashita T and Hasegawa T: Advantage of FISH analysis using FKHR probes for an adjunct to diagnosis of rhabdomyosarcomas. Virchows Arch. 452:251–258. 2008. View Article : Google Scholar : PubMed/NCBI | |
Miura Y, Keira Y, Ogino J, Nakanishi K, Noguchi H, Inoue T and Hasegawa T: Detection of specific genetic abnormalities by fluorescence in situ hybridization in soft tissue tumors. Pathol Int. 62:16–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barr FG, Chatten J, D’Cruz CM, Wilson AE, Nauta LE, Nycum LM, Biegel JA and Womer RB: Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 273:553–557. 1995. View Article : Google Scholar : PubMed/NCBI | |
Arden KC, Anderson MJ, Finckenstein FG, Czekay S and Cavenee WK: Detection of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma using the reverse transcriptase-polymerase chain reaction. Genes Chromosomes Cancer. 16:254–260. 1996. View Article : Google Scholar | |
Kelly KM, Womer RB and Barr FG: Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer. 78:1320–1327. 1996. View Article : Google Scholar | |
Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, Bridge JA, Crist WM, Triche TJ and Barr FG: PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 20:2672–2679. 2002.PubMed/NCBI | |
Thway K, Rockcliffe S, Gonzalez D, Swansbury J, Min T, Thompson L and Fisher C: Utility of sarcoma-specific fusion gene analysis in paraffin-embedded material for routine diagnosis at a specialist centre. J Clin Pathol. 63:508–512. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eguía-Aguilar P, Ponce-Castañeda V, Nájera-García N, Nieto-Martínez K, Kofman-Alfaro S, Sadowinski-Pine S, Valencia-Mayoral P, Arenas-Huertero F and Perezpeña-Diazconti M: Detection of fusion genes in formalin-fixed paraffin-embedded tissue sections of rhabdomyosarcoma by RT-PCR and fluorescence in situ hybridization in Mexican patients. Arch Med Res. 41:119–124. 2010.PubMed/NCBI | |
Downing JR, Khandekar A, Shurtleff SA, Head DR, Parham DM, Webber BL, Pappo AS, Hulshof MG, Conn WP and Shapiro DN: Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol. 146:626–634. 1995. | |
Anderson J, Renshaw J, McManus A, Carter R, Mitchell C, Adams S and Pritchard-Jones K: Amplification of the t(2;13) and t(1;13) translocations of alveolar rhabdomyosarcoma in small formalin-fixed biopsies using a modified reverse transcriptase polymerase chain reaction. Am J Pathol. 150:477–482. 1997. | |
Athale UH, Shurtleff SA, Jenkins JJ, Poquette CA, Tan M, Downing JR and Pappo AS: Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol. 23:99–104. 2001. View Article : Google Scholar | |
Edwards RH, Chatten J, Xiong QB and Barr FG: Detection of gene fusions in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction assay of archival samples. Diagn Mol Pathol. 6:91–97. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chen BF, Chen ML, Liang DC, Huang YW, Liu HC and Chen SH: Detection of PAX3-FKHR and PAX7-FKHR fusion transcripts in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction using paraffin-embedded tissue. Zhonghua Yi Xue Za Zhi (Taipei). 62:86–91. 1999.PubMed/NCBI | |
Jin L, Majerus J, Oliveira A, Inwards CY, Nascimento AG, Burgart LJ and Lloyd RV: Detection of fusion gene transcripts in fresh-frozen and formalin-fixed paraffin-embedded tissue sections of soft-tissue sarcomas after laser capture microdissection and rt-PCR. Diagn Mol Pathol. 12:224–230. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fritsch MK, Bridge JA, Schuster AE, Perlman EJ and Argani P: Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol. 6:43–53. 2003. View Article : Google Scholar | |
Peter M, Gilbert E and Delattre O: A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest. 81:905–912. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krsková L, Mrhalová M, Hilská I, Sumerauer D, Drahokoupilová E, Múdry P and Kodet R: Detection and clinical significance of bone marrow involvement in patients with rhabdomyosarcoma. Virchows Arch. 456:463–472. 2010.PubMed/NCBI | |
Hostein I, Andraud-Fregeville M, Guillou L, Terrier-Lacombe MJ, Deminière C, Ranchère D, Lussan C, Longavenne E, Bui NB, Delattre O and Coindre JM: Rhabdomyosarcoma: value of myogenin expression analysis and molecular testing in diagnosing the alveolar subtype: an analysis of 109 paraffin-embedded specimens. Cancer. 101:2817–2824. 2004. View Article : Google Scholar : PubMed/NCBI | |
Turc-Carel C, Dal Cin P, Limon J, Rao U, Li FP, Corson JM, Zimmerman R, Parry DM, Cowan JM and Sandberg AA: Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci USA. 84:1981–1985. 1987. View Article : Google Scholar : PubMed/NCBI | |
Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA and Cooper CS: Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 7:502–508. 1994. View Article : Google Scholar : PubMed/NCBI | |
de Leeuw B, Balemans M, Olde Weghuis D and Geurts van Kessel A: Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 4:1097–1099. 1995.PubMed/NCBI | |
Lee W, Han K, Harris CP, Shim S, Kim S and Meisner LF: Use of FISH to detect chromosomal translocations and deletions. Analysis of chromosome rearrangement in synovial sarcoma cells from paraffin-embedded specimens. Am J Pathol. 143:15–19. 1993. | |
Knight JC, Reeves BR, Kearney L, Monaco AP, Lehrach H and Cooper CS: Localization of the synovial sarcoma t(X;18)(p11.2;q11.2) breakpoint by fluorescence in situ hybridization. Hum Mol Genet. 1:633–637. 1992. View Article : Google Scholar : PubMed/NCBI | |
de Leeuw B, Suijkerbuijk RF, Balemans M, Sinke RJ, de Jong B, Molenaar WM, Meloni AM, Sandberg AA, Geraghty M and Hofker M: Sublocalization of the synovial sarcoma-associated t(X;18) chromosomal breakpoint in Xp11.2 using cosmid cloning and fluorescence in situ hybridization. Oncogene. 8:1457–1463. 1993. | |
Motoi T, Kumagai A, Tsuji K, Imamura T and Fukusato T: Diagnostic utility of dual-color break-apart chromogenic in situ hybridization for the detection of rearranged SS18 in formalin-fixed, paraffin-embedded synovial sarcoma. Hum Pathol. 41:1397–1404. 2010. View Article : Google Scholar : PubMed/NCBI | |
Terry J, Barry TS, Horsman DE, Hsu FD, Gown AM, Huntsman DG and Nielsen TO: Fluorescence in situ hybridization for the detection of t(X;18)(p11.2;q11.2) in a synovial sarcoma tissue microarray using a breakapart-style probe. Diagn Mol Pathol. 14:77–82. 2005. View Article : Google Scholar : PubMed/NCBI | |
Geiersbach K, Rector LS, Sederberg M, Hooker A, Randall RL, Schiffman JD and South ST: Unknown partner for USP6 and unusual SS18 rearrangement detected by fluorescence in situ hybridization in a solid aneurysmal bone cyst. Cancer Genet. 204:195–202. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kanemitsu S, Hisaoka M, Shimajiri S, Matsuyama A and Hashimoto H: Molecular detection of SS18-SSX fusion gene transcripts by cRNA in situ hybridization in synovial sarcoma using formalin-fixed, paraffin-embedded tumor tissue specimens. Diagn Mol Pathol. 16:9–17. 2007. View Article : Google Scholar : PubMed/NCBI | |
Argani P, Zakowski MF, Klimstra DS, Rosai J and Ladanyi M: Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod Pathol. 11:65–71. 1998.PubMed/NCBI | |
Guillou L, Coindre J, Gallagher G, Terrier P, Gebhard S, de Saint Aubain Somerhausen N, Michels J, Jundt G, Vince DR, Collin F, Trassard M, Le Doussal V and Benhattar J: Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 32:105–112. 2001. | |
Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J and Ladanyi M: Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol. 147:1592–1599. 1995.PubMed/NCBI | |
Safar A, Wickert R, Nelson M, Neff JR and Bridge JA: Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol. 7:283–287. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tsuji S, Hisaoka M, Morimitsu Y, Hashimoto H, Shimajiri S, Komiya S, Ushijima M and Nakamura T: Detection of SYT-SSX fusion transcripts in synovial sarcoma by reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Am J Pathol. 153:1807–1812. 1998. View Article : Google Scholar | |
Sanders ME, van de Rijn M and Barr FG: Detection of a variant SYT-SSX1 fusion in a case of predominantly epithelioid synovial sarcoma. Mol Diagn. 4:65–70. 1999. View Article : Google Scholar : PubMed/NCBI | |
Katenkamp K, Richter P, Slatosch T, Katenkamp D and Berndt A: Simultaneous analysis of t(X;18) by FISH- und SYT/SSX-RT-PCR in synovial sarcoma. Pathologe. 26:111–116. 2005.(In German). | |
Cummings TJ, Brown NM and Stenzel TT: TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Ann Clin Lab Sci. 32:219–224. 2002. | |
Coindre JM, Hostein I, Benhattar J, Lussan C, Rivel J and Guillou L: Malignant peripheral nerve sheath tumors are t(X;18)-negative sarcomas. Molecular analysis of 25 cases occurring in neurofibromatosis type 1 patients, using two different RT-PCR-based methods of detection. Mod Pathol. 15:589–592. 2002. View Article : Google Scholar | |
Hostein I, Menard A, Bui BN, Lussan C, Wafflart J, Delattre O, Peter M, Benhattar J, Guillou L and Coindre JM: Molecular detection of the synovial sarcoma translocation t(X;18) by real-time polymerase chain reaction in paraffin-embedded material. Diagn Mol Pathol. 11:16–21. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bijwaard KE, Fetsch JF, Przygodzki R, Taubenberger JK and Lichy JH: Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real-time reverse transcriptase-polymerase chain reaction. J Mol Diagn. 4:59–64. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L, Lev DC, Lazar AJ and López-Terrada D: Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 22:1201–1209. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hiraga H, Nojima T, Abe S, Yamashiro K, Yamawaki S, Kaneda K and Nagashima K: Establishment of a new continuous clear cell sarcoma cell line. Morphological and cytogenetic characterization and detection of chimaeric EWS/ATF-1 transcripts. Virchows Arch. 431:45–51. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi U, Hasegawa T, Morimoto Y, Tateishi U, Endo M, Nakatani F, Kawai A, Chuman H, Beppu Y, Endo M, Kurotaki H and Furuta K: A practical approach to the clinical diagnosis of Ewing’s sarcoma/primitive neuroectodermal tumour and other small round cell tumours sharing EWS rearrangement using new fluorescence in situ hybridisation probes for EWSR1 on formalin fixed, paraffin wax embedded tissue. J Clin Pathol. 58:1051–1056. 2005. | |
Song JS, Choi J, Kim JH, Jang SJ and Cho KJ: Diagnostic utility of EWS break-apart fluorescence in situ hybridization in distinguishing between non-cutaneous melanoma and clear cell sarcoma. Pathol Int. 60:608–613. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patel RM, Downs-Kelly E, Weiss SW, Folpe AL, Tubbs RR, Tuthill RJ, Goldblum JR and Skacel M: Dual-color, break-apart fluorescence in situ hybridization for EWS gene rearrangement distinguishes clear cell sarcoma of soft tissue from malignant melanoma. Mod Pathol. 18:1585–1590. 2005.PubMed/NCBI | |
Speleman F, Delattre O, Peter M, Hauben E, Van Roy N and Van Marck E: Malignant melanoma of the soft parts (clear-cell sarcoma): confirmation of EWS and ATF-1 gene fusion caused by a t(12;22) translocation. Mod Pathol. 10:496–499. 1997.PubMed/NCBI | |
Panagopoulos I, Mertens F, Dêbiec-Rychter M, Isaksson M, Limon J, Kardas I, Domanski HA, Sciot R, Perek D, Crnalic S, Larsson O and Mandahl N: Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer. 99:560–567. 2002. View Article : Google Scholar : PubMed/NCBI | |
Antonescu CR, Tschernyavsky SJ, Woodruff JM, Jungbluth AA, Brennan MF and Ladanyi M: Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn. 4:44–52. 2002. View Article : Google Scholar : PubMed/NCBI | |
Coindre JM, Hostein I, Terrier P, Bouvier-Labit C, Collin F, Michels JJ, Trassard M, Marques B, Ranchere D and Guillou L: Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues: clinicopathologic and molecular analysis of 44 patients from the French sarcoma group. Cancer. 107:1055–1064. 2006. View Article : Google Scholar | |
Ladanyi M and Gerald W: Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 54:2837–2840. 1994.PubMed/NCBI | |
Karnieli E, Werner H, Rauscher FJ III, Benjamin LE and LeRoith D: The IGF-I receptor gene promoter is a molecular target for the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein. J Biol Chem. 271:19304–19309. 1996. | |
Benjamin LE, Fredericks WJ, Barr FG and Rauscher FJ III: Fusion of the EWS1 and WT1 genes as a result of the t(11;22)(p13;q12) translocation in desmoplastic small round cell tumors. Med Pediatr Oncol. 27:434–439. 1996. View Article : Google Scholar : PubMed/NCBI | |
Barnoud R, Delattre O, Péoc’h M, Pasquier D, Plantaz D, Leroux D and Pasquier B: Desmoplastic small round cell tumor: RT-PCR analysis and immunohistochemical detection of the Wilm’s tumor gene WT1. Pathol Res Pract. 194:693–700. 1998.PubMed/NCBI | |
Gerald WL, Rosai J and Ladanyi M: Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA. 92:1028–1032. 1995. View Article : Google Scholar : PubMed/NCBI | |
Rauscher FJ III, Benjamin LE, Fredericks WJ and Morris JF: Novel oncogenic mutations in the WT1 Wilms’ tumor suppressor gene: a t(11;22) fuses the Ewing’s sarcoma gene, EWS1, to WT1 in desmoplastic small round cell tumor. Cold Spring Harb Symp Quant Biol. 59:137–146. 1994. | |
Antonescu CR, Gerald WL, Magid MS and Ladanyi M: Molecular variants of the EWS-WT1 gene fusion in desmoplastic small round cell tumor. Diagn Mol Pathol. 7:24–28. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hill DA, Pfeifer JD, Marley EF, Dehner LP, Humphrey PA, Zhu X and Swanson PE: WT1 staining reliably differentiates desmoplastic small round cell tumor from Ewing sarcoma/primitive neuroectodermal tumor. An immunohistochemical and molecular diagnostic study. Am J Clin Pathol. 114:345–353. 2000. | |
Brodie SG, Stocker SJ, Wardlaw JC, Duncan MH, McConnell TS, Feddersen RM and Williams TM: EWS and WT-1 gene fusion in desmoplastic small round cell tumor of the abdomen. Hum Pathol. 26:1370–1374. 1995. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Nau MM, Yeh JC, Allegra CJ, Chu E and Wright JJ: Molecular heterogeneity and function of EWS-WT1 fusion transcripts in desmoplastic small round cell tumors. Clin Cancer Res. 6:3522–3529. 2000.PubMed/NCBI | |
Su LD, Atayde-Perez A, Sheldon S, Fletcher JA and Weiss SW: Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol. 11:364–368. 1998.PubMed/NCBI | |
Souid AK, Ziemba MC, Dubansky AS, Mazur M, Oliphant M, Thomas FD, Ratner M and Sadowitz PD: Inflammatory myofibroblastic tumor in children. Cancer. 72:2042–2048. 1993. View Article : Google Scholar : PubMed/NCBI | |
Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T and Perlman EJ: Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59:2776–2780. 1999.PubMed/NCBI | |
Tan LH, Do E, Tan SY, Chong SM and Koay ES: Multi-lineage interrogation of the performance characteristics of a split-signal fluorescence in situ hybridization probe for anaplastic lymphoma kinase gene rearrangements: a study of 101 cases characterized by immunohistomorphology on fixed archival tissue. Mol Diagn. 8:213–229. 2004. | |
Sirvent N, Hawkins AL, Moeglin D, Coindre JM, Kurzenne JY, Michiels JF, Barcelo G, Turc-Carel C, Griffin CA and Pedeutour F: ALK probe rearrangement in a t(2;11;2)(p23;p15;q31) translocation found in a prenatal myofibroblastic fibrous lesion: toward a molecular definition of an inflammatory myofibroblastic tumor family? Genes Chromosomes Cancer. 31:85–90. 2001. View Article : Google Scholar | |
Stoll LM and Li QK: Cytology of fine-needle aspiration of inflammatory myofibroblastic tumor. Diagn Cytopathol. 39:663–672. 2011. View Article : Google Scholar : PubMed/NCBI | |
Borak S, Siegal GP, Reddy V, Jhala N and Jhala D: Metastatic inflammatory myofibroblastic tumor identified by EUS-FNA in mediastinal lymph nodes with ancillary FISH studies for ALK rearrangement. Diagn Cytopathol. 40(Suppl 2): S118–S125. 2012. View Article : Google Scholar | |
Li XQ, Hisaoka M, Shi DR, Zhu XZ and Hashimoto H: Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum Pathol. 35:711–721. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alaggio R, Barisani D, Ninfo V, Rosolen A and Coffin CM: Morphologic overlap between infantile myofibromatosis and infantile fibrosarcoma: A pitfall in diagnosis. Pediatr Dev Pathol. 11:355–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CD and Fletcher JA: TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 157:377–384. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cools J, Wlodarska I, Somers R, Mentens N, Pedeutour F, Maes B, De Wolf-Peeters C, Pauwels P, Hagemeijer A and Marynen P: Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 34:354–362. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lamant L, Dastugue N, Pulford K, Delsol G and Mariamé B: A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 93:3088–3095. 1999.PubMed/NCBI | |
Drexler HG, Gignac SM, von Wasielewski R, Werner M and Dirks WG: Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia. 14:1533–1559. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W, Lui MY, Colleoni GW, Antonescu CR, Ladanyi M and Morris SW: Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 159:411–415. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Krishnan C, Nguyen EP, Meyer KJ, Oliveira JL, Yang P, Yi ES, Erickson-Johnson MR, Yaszemski MJ, Maran A and Oliveira AM: Fusion of dynactin 1 to anaplastic lymphoma kinase in inflammatory myofibroblastic tumor. Hum Pathol. 43:2047–2052. 2012. View Article : Google Scholar : PubMed/NCBI | |
Panagopoulos I, Nilsson T, Domanski HA, Isaksson M, Lindblom P, Mertens F and Mandahl N: Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer. 118:1181–1186. 2006. View Article : Google Scholar : PubMed/NCBI | |
Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, Ladanyi M, Capelletti M, Rodig SJ, Ramaiya N, Kwak EL, Clark JW, Wilner KD, Christensen JG, Jänne PA, Maki RG, Demetri GD and Shapiro GI: Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 363:1727–1733. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tothova Z and Wagner AJ: Anaplastic lymphoma kinase-directed therapy in inflammatory myofibroblastic tumors. Curr Opin Oncol. 24:409–413. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lieberman PH, Brennan MF, Kimmel M, Erlandson RA, Garin-Chesa P and Flehinger BY: Alveolar soft-part sarcoma. A clinico-pathologic study of half a century. Cancer. 63:1–13. 1989. View Article : Google Scholar : PubMed/NCBI | |
Ordonez NG: Alveolar soft part sarcoma: a review and update. Adv Anat Pathol. 6:125–139. 1999. View Article : Google Scholar : PubMed/NCBI | |
Joyama S, Ueda T, Shimizu K, Kudawara I, Mano M, Funai H, Takemura K and Yoshikawa H: Chromosome rearrangement at 17q25 and xp11.2 in alveolar soft-part sarcoma: A case report and review of the literature. Cancer. 86:1246–1250. 1999. View Article : Google Scholar : PubMed/NCBI | |
Uppal S, Aviv H, Patterson F, Cohen S, Benevenia J, Aisner S and Hameed M: Alveolar soft part sarcoma - reciprocal translocation between chromosome 17q25 and Xp11. Report of a case with metastases at presentation and review of the literature. Acta Orthop Belg. 69:182–187. 2003.PubMed/NCBI | |
Amin MB, Patel RM, Oliveira P, Cabrera R, Carneiro V, Preto M, Balzer B and Folpe AL: Alveolar soft-part sarcoma of the urinary bladder with urethral recurrence: a unique case with emphasis on differential diagnoses and diagnostic utility of an immunohistochemical panel including TFE3. Am J Surg Pathol. 30:1322–1325. 2006. View Article : Google Scholar : PubMed/NCBI | |
Heimann P, Devalck C, Debusscher C, Sariban E and Vamos E: Alveolar soft-part sarcoma: further evidence by FISH for the involvement of chromosome band 17q25. Genes Chromosomes Cancer. 23:194–197. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P and Bridge J: The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 20:48–57. 2001. View Article : Google Scholar : PubMed/NCBI | |
Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, Reuter VE, Garvin AJ, Perez-Atayde AR, Fletcher JA, Beckwith JB, Bridge JA and Ladanyi M: Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 159:179–192. 2001. View Article : Google Scholar | |
Aulmann S, Longerich T, Schirmacher P, Mechtersheimer G and Penzel R: Detection of the ASPSCR1-TFE3 gene fusion in paraffin-embedded alveolar soft part sarcomas. Histopathology. 50:881–886. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hoshino M, Ogose A, Kawashima H, Izumi T, Hotta T, Hatano H, Morita T, Otsuka H, Umezu H, Yanoma S, Tsukuda M and Endo N: Molecular analyses of cell origin and detection of circulating tumor cells in the peripheral blood in alveolar soft part sarcoma. Cancer Genet Cytogenet. 190:75–80. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pink D, Bertz-Lepel J, Busemann C, Bitz U and Reichardt P: Efficacy of trabectedin in patients with advanced or metastatic alveolar soft-part sarcoma. Onkologie. 35:249–252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsuneyoshi M, Enjoji M, Iwasaki H and Shinohara N: Extraskeletal myxoid chondrosarcoma - a clinicopathologic and electron microscopic study. Acta Pathol Jpn. 31:439–447. 1981.PubMed/NCBI | |
Saleh G, Evans HL, Ro JY and Ayala AG: Extraskeletal myxoid chondrosarcoma. A clinicopathologic study of ten patients with long-term follow-up. Cancer. 70:2827–2830. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gebhardt MC, Parekh SG, Rosenberg AE and Rosenthal DI: Extraskeletal myxoid chondrosarcoma of the knee. Skeletal Radiol. 28:354–358. 1999. View Article : Google Scholar : PubMed/NCBI | |
Meis-Kindblom JM, Bergh P, Gunterberg B and Kindblom LG: Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol. 23:636–650. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sciot R, Dal Cin P, Fletcher C, Samson I, Smith M, De Vos R, Van Damme B and Van den Berghe H: t(9;22)(q22-31;q11-12) is a consistent marker of extraskeletal myxoid chondrosarcoma: evaluation of three cases. Mod Pathol. 8:765–768. 1995.PubMed/NCBI | |
Rao UN, Surti U, Hoffner L, Howard T, Leger W, Contis L and Yaw K: Extraskeletal and skeletal myxoid chondrosarcoma: A multiparameter analysis of three cases including cytogenetic analysis and fluorescence in situ hybridization. Mol Diagn. 1:99–107. 1996. View Article : Google Scholar | |
Harris M, Coyne J, Tariq M, Eyden BP, Atkinson M, Freemont AJ, Varley J, Attwooll C and Telford N: Extraskeletal myxoid chondrosarcoma with neuroendocrine differentiation: a pathologic, cytogenetic, and molecular study of a case with a novel translocation t(9;17)(q22;q11.2). Am J Surg Pathol. 24:1020–1026. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sjögren H, Wedell B, Meis-Kindblom JM, Kindblom LG and Stenman G: Fusion of the NH2-terminal domain of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res. 60:6832–6835. 2000.PubMed/NCBI | |
Gan TI, Rowen L, Nesbitt R, Roe BA, Wu H, Hu P, Yao Z, Kim UJ, O’Sickey T and Bina M: Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res. 98:245–248. 2002. View Article : Google Scholar : PubMed/NCBI | |
Attwooll C, Tariq M, Harris M, Coyne JD, Telford N and Varley JM: Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene. 18:7599–7601. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lim B, Jun HJ, Kim AY, Kim S, Choi J, Kim J, et al: The TFG-TEC fusion gene created by the t(3;9) translocation in human extraskeletal myxoid chondrosarcomas encodes a more potent transcriptional activator than TEC. Carcinogenesis. 33:1450–1458. 2012. | |
Brody RI, Ueda T, Hamelin A, Jhanwar SC, Bridge JA, Healey JH, Huvos AG, Gerald WL and Ladanyi M: Molecular analysis of the fusion of EWS to an orphan nuclear receptor gene in extraskeletal myxoid chondrosarcoma. Am J Pathol. 150:1049–1058. 1997.PubMed/NCBI | |
Panagopoulos I, Mertens F, Isaksson M, Domanski HA, Brosjö O, Heim S, Bjerkehagen B, Sciot R, Dal Cin P, Fletcher JA, Fletcher CD and Mandahl N: Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 35:340–352. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jakowski JD and Wakely PE Jr: Cytopathology of extraskeletal myxoid chondrosarcoma: report of 8 cases. Cancer. 111:298–305. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang WL, Mayordomo E, Czerniak BA, Abruzzo LV, Dal Cin P, Araujo DM, Lev DC, López-Terrada D and Lazar AJ: Fluorescence in situ hybridization is a useful ancillary diagnostic tool for extraskeletal myxoid chondrosarcoma. Mod Pathol. 21:1303–1310. 2008. View Article : Google Scholar : PubMed/NCBI | |
Noguchi H, Mitsuhashi T, Seki K, Tochigi N, Tsuji M, Shimoda T and Hasegawa T: Fluorescence in situ hybridization analysis of extraskeletal myxoid chondrosarcomas using EWSR1 and NR4A3 probes. Hum Pathol. 41:336–342. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sjögren H, Meis-Kindblom JM, Orndal C, Bergh P, Ptaszynski K, Aman P, Kindblom LG and Stenman G: Studies on the molecular pathogenesis of extraskeletal myxoid chondrosarcoma-cytogenetic, molecular genetic, and cDNA microarray analyses. Am J Pathol. 162:781–792. 2003.PubMed/NCBI | |
Okamoto S, Hisaoka M, Ishida T, Imamura T, Kanda H, Shimajiri S and Hashimoto H: Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 18 cases. Hum Pathol. 32:1116–1124. 2001. View Article : Google Scholar : PubMed/NCBI | |
Matsukuma S, Hisaoka M, Obara K, Kono T, Takeo H, Sato K and Hata Y: Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion, resembling extraskeletal myxoid chondrosarcoma: Case report with a review of Literature. Pathol Int. 62:817–822. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aurias A, Rimbaut C, Buffe D, Zucker JM and Mazabraud A: Translocation involving chromosome 22 in Ewing’s sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet Cytogenet. 12:21–25. 1984. | |
Whang-Peng J, Triche TJ, Knutsen T, Miser J, Kao-Shan S, Tsai S and Israel MA: Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 21:185–208. 1986. View Article : Google Scholar : PubMed/NCBI | |
Burchill SA: Ewing’s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J Clin Pathol. 56:96–102. 2003. | |
Gamberi G, Cocchi S, Benini S, Magagnoli G, Morandi L, Kreshak J, Gambarotti M, Picci P, Zanella L and Alberghini M: Molecular diagnosis in Ewing family tumors: the Rizzoli experience-222 consecutive cases in four years. J Mol Diagn. 13:313–324. 2011.PubMed/NCBI | |
Kojima T, Asami S, Chin M, Yoshida Y, Mugishima H and Suzuki T: Detection of chimeric genes in Ewing’s sarcoma and its clinical applications. Biol Pharm Bull. 25:991–994. 2002. | |
Davison JM, Morgan TW, Hsi BL, Xiao S and Fletcher JA: Subtracted, unique-sequence, in situ hybridization: experimental and diagnostic applications. Am J Pathol. 153:1401–1409. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cantile M, Marra L, Franco R, Ascierto P, Liguori G, De Chiara A and Botti G: Molecular detection and targeting of EWSR1 fusion transcripts in soft tissue tumors. Med Oncol. 30:4122013. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Pack S, Kumar D, Walker R, Quezado M, Zhuang Z, Meltzer P and Tsokos M: Detection of EWS-FLI-1 fusion in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor by fluorescence in situ hybridization using formalin-fixed paraffin-embedded tissue. Hum Pathol. 30:324–330. 1999. | |
Hattinger CM, Rumpler S, Kovar H and Ambros PF: Fine-mapping of cytogenetically undetectable EWS/ERG fusions on DNA fibers of Ewing tumors. Cytogenet Cell Genet. 93:29–35. 2001. View Article : Google Scholar : PubMed/NCBI | |
Newby R, Rowe D, Paterson L, Farquharson MA, MacDuff E, Coupe A, Hale J, Dildey P and Bown N: Cryptic EWSR1-FLI1 fusions in Ewing sarcoma: potential pitfalls in the diagnostic use of fluorescence in situ hybridization probes. Cancer Genet Cytogenet. 200:60–64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mangham DC, Williams A, McMullan DJ, McClure J, Sumathi VP, Grimer RJ and Davies AM: Ewing’s sarcoma of bone: the detection of specific transcripts in a large, consecutive series of formalin-fixed, decalcified, paraffin-embedded tissue samples using the reverse transcriptase-polymerase chain reaction. Histopathology. 48:363–376. 2006. | |
Park YK, Chi SG, Park HR, Yang MH and Unni KK: Detection of t(11;22)(q24;q12) translocation of Ewing’s sarcoma in paraffin embedded tissue by nested reverse transcription-polymerase chain reaction. J Korean Med Sci. 13:395–399. 1998.PubMed/NCBI | |
Stegmaier S, Leuschner I, Aakcha-Rudel E, Münch P, Kazanowska B, Bekassy A, Treuner J and Koscielniak E: Identification of various exon combinations of the ews/fli1 translocation: an optimized RT-PCR method for paraffin embedded tissue - a report by the CWS-study group. Klin Padiatr. 216:315–322. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hisaoka M, Tsuji S, Morimitsu Y, Hashimoto H, Shimajiri S, Komiya S and Ushijima M: Molecular detection of EWS-FLI1 chimeric transcripts in Ewing family tumors by nested reverse transcription-polymerase chain reaction: application to archival paraffin-embedded tumor tissues. APMIS. 107:577–584. 1999. View Article : Google Scholar | |
Montanaro L, Pession A, Trerè D, Vici M, Prete A, Paolucci G and Derenzini M: Detection of EWS chimeric transcripts by nested RT-PCR to allow reinfusion of uncontaminated peripheral blood stem cells in high-risk Ewing’s tumor in childhood. Haematologica. 84:1012–1015. 1999.PubMed/NCBI | |
Yang Y, Zhang L, Wei Y, Wang H, Xiong W, Chen Z, Hes O and Zheng J: Detection of EWSR1 translocation with nuclear extraction-based fluorescence in situ hybridization for diagnosis of Ewing’s sarcoma/primitive neuroectodermal tumor. Anal Quant Cytol Histol. 29:221–230. 2007.PubMed/NCBI | |
Meier VS, Kühne T, Jundt G and Gudat F: Molecular diagnosis of Ewing tumors: improved detection of EWS-FLI-1 and EWS-ERG chimeric transcripts and rapid determination of exon combinations. Diagn Mol Pathol. 7:29–35. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Nilsson G, Carlberg M, Dricu A, Wejde J, Kreicbergs A and Larsson O: Specific and sensitive detection of the EWS/FLI1 fusion protein in Ewing’s sarcoma by western blotting. Virchows Arch. 432:131–134. 1998. | |
Silva DS, Sawitzki FR, De Toni EC, Graebin P, Picanco JB, Abujamra AL, de Farias CB, Roesler R, Brunetto AL and Alho CS: Ewing’s sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene. 509:263–266. 2012. | |
Lewis TB, Coffin CM and Bernard PS: Differentiating Ewing’s sarcoma from other round blue cell tumors using a RT-PCR translocation panel on formalin-fixed paraffin-embedded tissues. Mod Pathol. 20:397–404. 2007. | |
Angervall L and Kindblom LG: Principles for pathologic-anatomic diagnosis and classification of soft-tissue sarcomas. Clin Orthop Relat Res. 289:9–18. 1993.PubMed/NCBI | |
Sreekantaiah C, Ladanyi M, Rodriguez E and Chaganti RS: Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms. Am J Pathol. 144:1121–1134. 1994.PubMed/NCBI | |
Ladanyi M and Bridge JA: Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol. 31:532–538. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bridge JA and Sandberg AA: Cytogenetic and molecular genetic techniques as adjunctive approaches in the diagnosis of bone and soft tissue tumors. Skeletal Radiol. 29:249–258. 2000. View Article : Google Scholar : PubMed/NCBI | |
Singer S: New diagnostic modalities in soft tissue sarcoma. Semin Surg Oncol. 17:11–22. 1999. View Article : Google Scholar : PubMed/NCBI |