1
|
Estey E and Dohner H: Acute myeloid
leukaemia. Lancet. 368:1894–1907. 2006. View Article : Google Scholar
|
2
|
Wlodarska I, Mecucci C, Baens M, Marynen P
and van den Berghe H: ETV6 gene rearrangements in hematopoietic
malignant disorders. Leuk Lymphoma. 23:287–295. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Plass C, Oakes C, Blum W and Marcucci G:
Epigenetics in acute myeloid leukemia. Semin Oncol. 35:378–387.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Figueroa ME, Lugthart S, Li Y, et al: DNA
methylation signatures identify biologically distinct subtypes in
acute myeloid leukemia. Cancer Cell. 17:13–27. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang N, Pan J, Cao L, et al: The
expression and clinical significance of miR-203 in pediatric acute
leukemia. Zhonghua Xue Ye Xue Za Zhi. 34:777–781. 2013.(In
Chinese).
|
6
|
Jian P, Yan WS, Chao SL, et al: Promoter
of TFPI-2 is hypermethylated in Chinese pediatric acute myeloid
leukemia. J Pediatr Hematol Oncol. 34:43–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rodrigues EF, Santos-Reboucas CB,
Goncalves Pimentel MM, et al: Epigenetic alterations of p15(INK4B)
and p16(INK4A) genes in pediatric primary myelodysplastic syndrome.
Leuk Lymphoma. 51:1887–1894. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ekmekci CG, Gutierrez MI, Siraj AK, Ozbek
U and Bhatia K: Aberrant methylation of multiple tumor suppressor
genes in acute myeloid leukemia. Am J Hematol. 77:233–240. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Britschgi C, Jenal M, Rizzi M, et al: HIC1
tumour suppressor gene is suppressed in acute myeloid leukaemia and
induced during granulocytic differentiation. Br J Haematol.
141:179–187. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Voso MT, Scardocci A, Guidi F, et al:
Aberrant methylation of DAP-kinase in therapy-related acute myeloid
leukemia and myelodysplastic syndromes. Blood. 103:698–700. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Sahu GR, Mishra R, Nagpal JK and Das BR:
Alteration of p73 in acute myelogenous leukemia. Am J Hematol.
79:1–7. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tao YF, Jian N, Jun L, et al: The promoter
of miR-663 is hypermethylated in Chinese pediatric acute myeloid
leukemia (AML). BMC Med Genet. 14:742013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Paz-Priel I and Friedman A: C/EBPα
dysregulation in AML and ALL. Crit Rev Oncog. 16:93–102. 2011.
|
14
|
Tao YF, Pang L, Du XJ, et al: Differential
mRNA expression levels of human histone-modifying enzymes in normal
karyotype B cell pediatric acute lymphoblastic leukemia. Int J Mol
Sci. 14:3376–3394. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Issa JP: CpG island methylator phenotype
in cancer. Nat Rev Cancer. 4:988–993. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boultwood J and Wainscoat JS: Gene
silencing by DNA methylation in haematological malignancies. Br J
Haematol. 138:3–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gibbons RJ, McDowell TL, Raman S, et al:
Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse
changes in the pattern of DNA methylation. Nat Genet. 24:368–371.
2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Klose RJ and Bird AP: Genomic DNA
methylation: the mark and its mediators. Trends Biochem Sci.
31:89–97. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Baylin SB and Ohm JE: Epigenetic gene
silencing in cancer - a mechanism for early oncogenic pathway
addiction? Nat Rev Cancer. 6:107–116. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Flach J, Dicker F, Schnittger S, et al: An
accumulation of cytogenetic and molecular genetic events
characterizes the progression from MDS to secondary AML: an
analysis of 38 paired samples analyzed by cytogenetics, molecular
mutation analysis and SNP microarray profiling. Leukemia.
25:713–718. 2011. View Article : Google Scholar
|
21
|
Gao S, Hsieh CL, Zhou J and Shemshedini L:
Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells.
PLoS One. 8:e787662013.PubMed/NCBI
|
22
|
Wang T, Wang XG, Xu JH, et al:
Overexpression of the human ZNF300 gene enhances growth and
metastasis of cancer cells through activating NF-κB pathway. J Cell
Mol Med. 16:1134–1145. 2012.PubMed/NCBI
|
23
|
Wang Y, Ye X, Zhou J, et al: A novel human
KRAB-related zinc finger gene ZNF425 inhibits mitogen-activated
protein kinase signaling pathway. BMB Rep. 44:58–63. 2011.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cheng Y, Geng H, Cheng SH, et al: KRAB
zinc finger protein ZNF382 is a proapoptotic tumor suppressor that
represses multiple oncogenes and is commonly silenced in multiple
carcinomas. Cancer Res. 70:6516–6526. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Olek A, Oswald J and Walter J: A modified
and improved method for bisulphite based cytosine methylation
analysis. Nucleic Acids Res. 24:5064–5066. 1996. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bullinger L, Ehrich M, Dohner K, et al:
Quantitative DNA methylation predicts survival in adult acute
myeloid leukemia. Blood. 115:636–642. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Deneberg S, Grovdal M, Karimi M, et al:
Gene-specific and global methylation patterns predict outcome in
patients with acute myeloid leukemia. Leukemia. 24:932–941. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Cancer Genome Atlas Research Network.
Genomic and epigenomic landscapes of adult de novo acute myeloid
leukemia. N Engl J Med. 368:2059–2074. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Severson PL, Tokar EJ, Vrba L, Waalkes MP
and Futscher BW: Coordinate H3K9 and DNA methylation silencing of
ZNFs in toxicant-induced malignant transformation. Epigenetics.
8:1080–1088. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kuang SQ, Tong WG, Yang H, et al:
Genome-wide identification of aberrantly methylated promoter
associated CpG islands in acute lymphocytic leukemia. Leukemia.
22:1529–1538. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu Y, Zhang X, Blumenthal RM and Cheng X:
A common mode of recognition for methylated CpG. Trends Biochem
Sci. 38:177–183. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Buck-Koehntop BA, Stanfield RL, Ekiert DC,
et al: Molecular basis for recognition of methylated and specific
DNA sequences by the zinc finger protein Kaiso. Proc Natl Acad Sci
USA. 109:15229–15234. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sasai N, Nakao M and Defossez PA:
Sequence-specific recognition of methylated DNA by human
zinc-finger proteins. Nucleic Acids Res. 38:5015–5022. 2010.
View Article : Google Scholar : PubMed/NCBI
|