Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)
- Authors:
- Julian Banerji
-
Affiliations: Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA - Published online on: July 15, 2015 https://doi.org/10.3892/ijmm.2015.2285
- Pages: 607-626
-
Copyright: © Banerji . This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Karlin S, Brocchieri L, Bergman A, Mrazek J and Gentles AJ: Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A. 99:333–338. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kreil DP and Kreil G: Asparagine repeats are rare in mammalian proteins. Trends Biochem Sci. 25:270–271. 2000. View Article : Google Scholar : PubMed/NCBI | |
Karlin S and Burge C: Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci USA. 93:1560–1565. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kawedia JD and Rytting ME: Asparaginase in acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 14(Suppl): S14–S17. 2014. View Article : Google Scholar : PubMed/NCBI | |
Müller HJ and Boos J: Use of L-Asparaginase in childhood ALL. Crit Rev Oncol Hematol. 28:97–113. 1998. View Article : Google Scholar : PubMed/NCBI | |
Suzuki R: Pathogenesis and treatment of extranodal natural killer/T-cell lymphoma. Semin Hematol. 51:42–51. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fréling E, Granel-Brocard F, Serrier C, Ortonne N, Barbaud A and Schmutz J: Extranodal NK/T-cell lymphoma, nasal-type, revealed by cutaneous breast involvement. Ann Dermatol Venereol. 142:104–111. 2015.In French. View Article : Google Scholar | |
Kidd JG: Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med. 98:565–582. 1953. View Article : Google Scholar : PubMed/NCBI | |
Broome JD: Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J Exp Med. 118:99–120. 1963. View Article : Google Scholar : PubMed/NCBI | |
Essig S, Li Q, Chen Y, Hitzler J, Leisenring W, Greenberg M, Sklar C, Hudson MM, Armstrong GT, Krull KR, et al: Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: A report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 15:841–851. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tong WH, Pieters R, Hop WC, Lanvers-Kaminsky C, Boos J and van der Sluis IM: No evidence of increased asparagine levels in the bone marrow of patients with acute lymphoblastic leukemia during asparaginase therapy. Pediatr Blood Cancer. 60:258–261. 2013. View Article : Google Scholar | |
Fine BM, Kaspers GJ, Ho M, Loonen AH and Boxer LM: A genome-wide view of the in vitro response to l-asparaginase in acute lymphoblastic leukemia. Cancer Res. 65:291–299. 2005.PubMed/NCBI | |
Kelo E, Noronkoski T, Stoineva IB, Petkov DD and Mononen I: Beta-aspartylpeptides as substrates of L-asparaginases from Escherichia coli and Erwinia chrysanthemi. FEBS Lett. 528:130–132. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB and Weinstein JN: The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood. 123:3596–3606. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Liu Y, Sun Y, Yan Q and Jiang Z: Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol. 80:1561–1569. 2014. View Article : Google Scholar : | |
Iwamaru Y, Miyake M, Arii J, Tanabe Y and Noda M: An inhibitory factor for cell-free protein synthesis from Salmonella enteritidis exhibits cytopathic activity against Chinese hamster ovary cells. Microb Pathog. 31:283–293. 2001. View Article : Google Scholar : PubMed/NCBI | |
Capizzi RL, Bertino JR, Skeel RT, Creasey WA, Zanes R, Olayon C, Peterson RG and Handschumacher RE: L-asparaginase: Clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med. 74:893–901. 1971. View Article : Google Scholar : PubMed/NCBI | |
Bettigole RE, Himelstein ES, Oettgen HF and Clifford GO: Hypofibrinogenemia due to L-asparaginase: Studies of fibrinogen survival using autologous 131-I-fibrinogen. Blood. 35:195–200. 1970.PubMed/NCBI | |
Avramis VI: Is glutamine depletion needed in ALL disease? Blood. 123:3532–3533. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quintanilla-Flores DL, Flores-Caballero MÁ, Rodríguez-Gutiérrez R, Tamez-Pérez HE and González-González JG: Acute pancreatitis and diabetic ketoacidosis following L-asparaginase/prednisonetherapy in acute lymphoblastic leukemia. Case Rep Oncol Med. 2014:1391692014. | |
Frankel DL, Wells H and Fillios LC: Concentrations of asparagine in tissues of prepubertal rats after enzymic or dietary depletion of asparagine. Biochem J. 132:645–648. 1973. View Article : Google Scholar : PubMed/NCBI | |
Holcenberg JS, Tang E and Dolowy WC: Effect of Acinetobacter glutaminase-asparaginase treatment on free amino acids in mouse tissues. Cancer Res. 35:1320–1325. 1975.PubMed/NCBI | |
Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL, et al: Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 125:2222–2231. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kullas AL, McClelland M, Yang HJ, Tam JW, Torres A, Porwollik S, Mena P, McPhee JB, Bogomolnaya L, Andrews-Polymenis H and van der Velden AW: L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe. 12:791–798. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lavine RL and DiCinto DM: L-asparaginase diabetes mellitus in rabbits: Differing effects of two different schedules of L-asparaginase administration. Horm Metab Res. 16(Suppl): 92–96. 1984.PubMed/NCBI | |
Khan A, Adachi M and Hill JM: Diabetogenic effect of L-asparaginase. J Clin Endocrinol Metab. 29:1373–1376. 1969. View Article : Google Scholar : PubMed/NCBI | |
Khan A, Adachi M and Hill JM: Potentiation of diabetogenic effect of L-asparaginase by prednisolone. Horm Metab Res. 2:275–276. 1970. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Qiu L, Xiao Q, Wang Y, Meng X, Xu R, Wang S and Na R: Obesity and diabetes related plasma amino acid alterations. Clin Biochem. 46:1447–1452. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nakamura H, Jinzu H, Nagao K, Noguchi Y, Shimba N, Miyano H, Watanabe T and Iseki K: Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes. 4:e1332014. View Article : Google Scholar : PubMed/NCBI | |
Burén J, Liu HX, Lauritz J and Eriksson JW: High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol. 148:157–167. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tsunekawa S, Demozay D, Briaud I, McCuaig J, Accili D, Stein R and Rhodes CJ: FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes. Diabetes. 60:2883–2891. 2011. View Article : Google Scholar : PubMed/NCBI | |
Argetsinger LS, Norstedt G, Billestrup N, White MF and Carter-Su C: Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem. 271:29415–29421. 1996. View Article : Google Scholar : PubMed/NCBI | |
Uddin S, Fish EN, Sher D, Gardziola C, Colamonici OR, Kellum M, Pitha PM, White MF and Platanias LC: The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood. 90:2574–2582. 1997.PubMed/NCBI | |
O'Connor JC, Sherry CL, Guest CB and Freund GG: Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. J Immunol. 178:6886–6893. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carey GB, Semenova E, Qi X and Keegan AD: IL-4 protects the B-cell lymphoma cell line CH31 from anti-IgM-induced growth arrest and apoptosis: Contribution of the PI-3 kinase/AKT pathway. Cell Res. 17:942–955. 2007. View Article : Google Scholar : PubMed/NCBI | |
Blaeser F, Bryce PJ, Ho N, Raman V, Dedeoglu F, Donaldson DD, Geha RS, Oettgen HC and Chatila TA: Targeted inactivation of the IL-4 receptor alpha chain I4R motif promotes allergic airway inflammation. J Exp Med. 198:1189–1200. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wurster AL, Withers DJ, Uchida T, White MF and Grusby MJ: Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent rescue from apoptosis. Mol Cell Biol. 22:117–126. 2002. View Article : Google Scholar | |
Butte NF, Voruganti VS, Cole SA, Haack K, Comuzzie AG, Muzny DM, Wheeler DA, Chang K, Hawes A and Gibbs RA: Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children. Physiol Genomics. 43:1029–1037. 2011. View Article : Google Scholar : PubMed/NCBI | |
Haghani K and Bakhtiyari S: The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran. Genet Test Mol Biomarkers. 16:1270–1276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ayaz L, Karakaş Çelik S and Cayan F: The G1057D polymorphism of insulin receptor substrate-2 associated with gestational diabetes mellitus. Gynecol Endocrinol. 30:165–168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pezzolesi MG, Poznik GD, Skupien J, Smiles AM, Mychaleckyj JC, Rich SS, Warram JH and Krolewski AS: An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney Int. 80:105–111. 2011. View Article : Google Scholar : PubMed/NCBI | |
Craig DW, Millis MP and DiStefano JK: Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet Med. 26:1090–1098. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim SK, Yu GI, Park HJ, Kim YJ, Kim JW, Baik HH and Chung JH: A polymorphism (rs4773092, Cys816Cys) of IRS2 affects auditory hallucinations in schizophrenia patients. Psychiatry Res. 209:124–125. 2013. View Article : Google Scholar : PubMed/NCBI | |
Acevedo N, Mercado D, Vergara C, Sánchez J, Kennedy MW, Jiménez S, Fernández AM, Gutiérrez M, Puerta L and Caraballo L: Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clin Exp Immunol. 157:282–290. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Perez JC, Rosa TC, Casinelli GP, Valle SR, Lakshmipathi J, Rosselot C, Rausell-Palamos F, Vasavada RC and García-Ocaña A: Hepatocyte growth factor ameliorates hyperglycemia and corrects β-cell mass in IRS2-deficient mice. Mol Endocrinol. 28:2038–2048. 2014. View Article : Google Scholar : PubMed/NCBI | |
Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, et al: Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 391:900–904. 1998. View Article : Google Scholar : PubMed/NCBI | |
Niessen M: On the role of IRS2 in the regulation of functional beta-cell mass. Arch Physiol Biochem. 112:65–73. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park S, Hong SM, Lee JE, Sung SR and Kim SH: Chlorpromazine attenuates pancreatic beta-cell function and mass through IRS2 degradation, while exercise partially reverses the attenuation. J Psychopharmacol. 22:522–531. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF and Gannon M: Differential regulation of embryonic and adult β cell replication. Cell Cycle. 11:2431–2442. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oliveira JM, Rebuffat SA, Gasa R and Gomis R: Targeting type 2 diabetes: Lessons from a knockout model of insulin receptor substrate 2. Can J Physiol Pharmacol. 92:613–620. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rametta R, Mozzi E, Dongiovanni P, Motta BM, Milano M, Roviaro G, Fargion S and Valenti L: Increased insulin receptor substrate 2 expression is associated with steatohepatitis and altered lipid metabolism in obese subjects. Int J Obes (Lond). 37:986–992. 2013. View Article : Google Scholar | |
Minchenko DO, Davydov VV, Budreiko OA, Moliavko OS, Kulieshova DK, Tiazhka OV and Minchenko OH: The expression of CCN2, IQSEC, RSPO1, DNAJC15, RIPK2, IL13RA2, IRS1, and IRS2 genes in blood of obese boys with insulin resistance. Fiziol Zh. 61:10–18. 2015.PubMed/NCBI | |
Chen GT and Inouye M: Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev. 8:2641–2652. 1994. View Article : Google Scholar : PubMed/NCBI | |
Mitarai N, Sneppen K and Pedersen S: Ribosome collisions and translation efficiency: Optimization by codon usage and mRNA destabilization. J Mol Biol. 382:236–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Goldman E and Zubay G: Clustering of low usage codons and ribosome movement. J Theor Biol. 170:339–354. 1994. View Article : Google Scholar : PubMed/NCBI | |
Chen GF and Inouye M: Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 18:1465–1473. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ivanov IG, Saraffova AA and Abouhaidar MG: Unusual effect of clusters of rare arginine (AGG) codons on the expression of human interferon alpha 1 gene in Escherichia coli. Int J Biochem Cell Biol. 29:659–666. 1997. View Article : Google Scholar : PubMed/NCBI | |
Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E and Mueller S: Virus attenuation by genome-scale changes in codon pair bias. Science. 320:1784–1787. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Fabritus L, Nougairède A, Aubry F, Gould EA and de Lamballerie X: Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding. PLoS Pathog. 11:e10047382015. View Article : Google Scholar : PubMed/NCBI | |
Sauna ZE and Kimchi-Sarfaty C: Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 12:683–691. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gartner JJ, Parker SC, Prickett TD, Dutton-Regester K, Stitzel ML, Lin JC, Davis S, Simhadri VL, Jha S, Katagiri N, et al: NISC Comparative Sequencing Program: Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci USA. 110:13481–13486. 2013. View Article : Google Scholar | |
Ingolia NT: Ribosome profiling: New views of translation, from single codons to genome scale. Nat Rev Genet. 15:205–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dana A and Tuller T: The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42:9171–9181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fredrick K and Ibba M: How the sequence of a gene can tune its translation. Cell. 141:227–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Q and Qu HQ: Human coding synonymous single nucleotide polymorphisms at ramp regions of mRNA translation. PLoS One. 8:e597062013. View Article : Google Scholar : PubMed/NCBI | |
Charneski CA and Hurst LD: Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol. 11:e10015082013. View Article : Google Scholar : PubMed/NCBI | |
Himeno H, Nameki N, Kurita D, Muto A and Abo T: Ribosome rescue systems in bacteria. Biochimie. 114:102–112. 2015. View Article : Google Scholar | |
Edenberg ER, Downey M and Toczyski D: Polymerase stalling during replication, transcription and translation. Curr Biol. 24:R445–R452. 2014. View Article : Google Scholar : PubMed/NCBI | |
Faucillion ML and Larsson J: Increased expression of X-linked genes in mammals is associated with a higher stability of transcripts and an increased ribosome density. Genome Biol Evol. 7:1039–1052. 2015. View Article : Google Scholar : PubMed/NCBI | |
Che F, Fu Q, Li X, Gao N, Qi F, Sun Z, Du Y and Li M: Association of insulin receptor H1085H C>T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure. 25:178–180. 2015. View Article : Google Scholar | |
de la Monte SM and Tong M: Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol. 88:548–559. 2014. View Article : Google Scholar : PubMed/NCBI | |
White MF: IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obes Metab. 16(Suppl 1): 4–15. 2014. View Article : Google Scholar : PubMed/NCBI | |
de la Monte SM: Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease. Drugs. 72:49–66. 2012. View Article : Google Scholar | |
Albert-Fort M, Hombrebueno JR, Pons-Vazquez S, Sanz-Gonzalez S, Diaz-Llopis M and Pinazo-Durán MD: Retinal neurodegenerative changes in the adult insulin receptor substrate-2 deficient mouse. Exp Eye Res. 124:1–10. 2014. View Article : Google Scholar : PubMed/NCBI | |
Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, Choudhury AI, Giese KP, Withers DJ and Pedarzani P: Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One. 7:e311242012. View Article : Google Scholar : PubMed/NCBI | |
Martín ED, Sánchez-Perez A, Trejo JL, Martin-Aldana JA, Cano Jaimez M, Pons S, Acosta Umanzor C, Menes L, White MF and Burks DJ: IRS-2 deficiency impairs NMDA receptor-dependent long-term potentiation. Cereb Cortex. 22:1717–1727. 2012. View Article : Google Scholar : | |
Sadagurski M, Cheng Z, Rozzo A, Palazzolo I, Kelley GR, Dong X, Krainc D and White MF: IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J Clin Invest. 121:4070–4081. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM and Guo S: Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes. 62:3887–3900. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carew RM, Sadagurski M, Goldschmeding R, Martin F, White MF and Brazil DP: Deletion of Irs2 causes reduced kidney size in mice: Role for inhibition of GSK3beta? BMC Dev Biol. 10:732010. View Article : Google Scholar : PubMed/NCBI | |
Hookham MB, O'Donovan HC, Church RH, Mercier-Zuber A, Luzi L, Curran SP, Carew RM, Droguett A, Mezzano S, Schubert M, et al: Insulin receptor substrate-2 is expressed in kidney epithelium and up-regulated in diabetic nephropathy. FEBS J. 280:3232–3243. 2013. View Article : Google Scholar : PubMed/NCBI | |
Landis J and Shaw LM: Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis. J Biol Chem. 289:18603–18613. 2014. View Article : Google Scholar : PubMed/NCBI | |
Porter HA, Perry A, Kingsley C, Tran NL and Keegan AD: IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett. 338:239–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hanada R, Tanaka Y, Kato K, Maeda D, Fukayama M, et al: Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci. 104:856–864. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verma R, Su S, McCrann DJ, Green JM, Leu K, Young PR, Schatz PJ, Silva JC, Stokes MP and Wojchowski DM: RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development. J Exp Med. 211:1715–1722. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bunn HF: Erythropoietin. Cold Spring Harb Perspect Med. 3:a0116192013. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Rissanen J, Miettinen R, Kärkkäinen P, Kekäläinen P, Kuusisto J, Mykkänen L, Karhapää P and Laakso M: New amino acid substitutions in the IRS-2 gene in Finnish and Chinese subjects with late-onset type 2 diabetes. Diabetes. 50:1949–1951. 2001. View Article : Google Scholar : PubMed/NCBI | |
Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, et al: Inflammation and Host Response to Injury, Large Scale Collaborative Research Program: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 110:3507–3512. 2013. View Article : Google Scholar | |
Taborsky GJ Jr, Mei Q, Hackney DJ and Mundinger TO: The search for the mechanism of early sympathetic islet neuropathy in autoimmune diabetes. Diabetes Obes Metab. 16(Suppl 1): 96–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nichenametla SN, Lazarus P and Richie JP Jr: A GAG trinucleotide-repeat polymorphism in the gene for glutathione biosynthetic enzyme, GCLC, affects gene expression through translation. FASEB J. 25:2180–2187. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, Piane LD, Kolahi K, Ameri K, Maltepe E, et al: Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 155:1956–1969. 2014. View Article : Google Scholar : PubMed/NCBI | |
Campolo J, Penco S, Bianchi E, Colombo L, Parolini M, Caruso R, Sedda V, Patrosso MC, Cighetti G, Marocchi A, et al: Glutamate-cysteine ligase polymorphism, hypertension, and male sex are associated with cardiovascular events. Biochemical and genetic characterization of Italian subpopulation. Am Heart J. 154:1123–1129. 2007. View Article : Google Scholar : PubMed/NCBI | |
Piao ZH, Kim MS, Jeong M, Yun S, Lee SH, Sun HN, Song HY, Suh HW, Jung H, Yoon SR, et al: VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa. Cell Immunol. 280:1–9. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shalev A: Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mol Endocrinol. 28:1211–1220. 2014. View Article : Google Scholar : PubMed/NCBI | |
Coucha M, Elshaer SL, Eldahshan WS, Mysona BA and El-Remessy AB: Molecular mechanisms of diabetic retinopathy: Potential therapeutic targets. Middle East Afr J Ophthalmol. 22:135–144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kaadige MR, Yang J, Wilde BR and Ayer DE: MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Mol Cell Biol. 35:101–110. 2015. View Article : Google Scholar : | |
Mead EA, Li M, Tu Z and Zhu J: Translational regulation of Anopheles gambiae mRNAs in the midgut during Plasmodium falciparuminfection. BMC Genomics. 13:3662012. View Article : Google Scholar | |
Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, Horikoshi M, Johnson AD, Ng MC, Prokopenko I, et al: DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium: Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 46:234–244. 2014. View Article : Google Scholar : PubMed/NCBI | |
Betarbet R, Anderson LR, Gearing M, Hodges TR, Fritz JJ, Lah JJ and Levey AI: Fas-associated factor 1 and Parkinson's disease. Neurobiol Dis. 31:309–315. 2008. View Article : Google Scholar : PubMed/NCBI | |
Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Labaj PP, Leparc GG, Bardet AF, Kreil G and Kreil DP: Single amino acid repeats in signal peptides. FEBS J. 277:3147–3157. 2010. View Article : Google Scholar : PubMed/NCBI | |
Depledge DP and Dalby AR: COPASAAR - a database for proteomic analysis of single amino acid repeats. BMC Bioinformatics. 6:1962005. View Article : Google Scholar | |
Khan A, Hill JM and Adachi M: Inhibition of anti-tumour effect of L-asparaginase by methionine and choline. Lancet. 2:10821970. View Article : Google Scholar : PubMed/NCBI | |
Rudman D, Vogler WR, Howard CH and Gerron GG: Observations on the plasma amino acids of patients with acute leukemia. Cancer Res. 31:1159–1165. 1971.PubMed/NCBI | |
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS and Guan KL: Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 347:194–198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jewell JL, Russell RC and Guan KL: Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 14:133–139. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chi Y, Burkhardt BR, Guan Y and Wolf BA: Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 68:270–279. 2010. View Article : Google Scholar : PubMed/NCBI | |
Riedl E, Koeppel H, Brinkkoetter P, Sternik P, Steinbeisser H, Sauerhoefer S, Janssen B, van der Woude FJ and Yard BA: A CTG polymorphism in the CNDP1 gene determines the secretion of serum carnosinase in Cos-7 transfected cells. Diabetes. 56:2410–2413. 2007. View Article : Google Scholar : PubMed/NCBI | |
Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, Xu J, McDonough C, Janssen B, Yard BA, et al: A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant. 22:1131–1135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zachariah RM, Olson CO, Ezeonwuka C and Rastegar M: Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One. 7:e497632012. View Article : Google Scholar : PubMed/NCBI | |
No authors listed. The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72:971–983. 1993. View Article : Google Scholar | |
Klesert TR, Otten AD, Bird TD and Tapscott SJ: Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat Genet. 16:402–406. 1997. View Article : Google Scholar : PubMed/NCBI | |
Korade-Mirnics Z, Babitzke P and Hoffman E: Myotonic dystrophy: Molecular windows on a complex etiology. Nucleic Acids Res. 26:1363–1368. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lozano R, Rosero CA and Hagerman RJ: Fragile X spectrum disorders. Intractable Rare Dis Res. 3:134–146. 2014. View Article : Google Scholar | |
Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L, Sulkava R, Jansson L, Hernandez DG, Gibbs JR, et al: Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: A genome-wide association study. Lancet Neurol. 9:978–985. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, et al: A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study. Lancet Neurol. 11:54–65. 2012. View Article : Google Scholar | |
Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, Sidle K, Fratta P, Orrell RW, Hardy J, et al: C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 14:291–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ and Hautbergue GM: Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol. 41:109–134. 2015. View Article : Google Scholar : | |
Cleary JD and Ranum LP: Repeat associated non-ATG (RAN) translation: New starts in microsatellite expansion disorders. Curr Opin Genet Dev. 26:6–15. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Wen JD, Bustamante C and Tinoco I Jr: Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell. 160:870–881. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scoles DR, Ho MH, Dansithong W, Pflieger LT, Petersen LW, Thai KK and Pulst SM: Repeat Associated Non-AUG Translation (RAN Translation) Dependent on Sequence Downstream of the ATXN2 CAG Repeat. PLoS One. 10:e01287692015. View Article : Google Scholar : PubMed/NCBI | |
Muerdter F and Stark A: Genomics: Hiding in plain sight. Nature. 512:374–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
La Spada AR, Paulson HL and Fischbeck KH: Trinucleotide repeat expansion in neurological disease. Ann Neurol. 36:814–822. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kayatekin C, Matlack KE, Hesse WR, Guan Y, Chakrabortee S, Russ J, Wanker EE, Shah JV and Lindquist S: Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1. Proc Natl Acad Sci USA. 111:12085–12090. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ripaud L, Chumakova V, Antonin M, Hastie AR, Pinkert S, Körner R, Ruff KM, Pappu RV, Hornburg D, Mann M, et al: Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc Natl Acad Sci USA. 111:18219–18224. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chambers JW, Maguire TG and Alwine JC: Glutamine metabolism is essential for human cytomegalovirus infection. J Virol. 84:1867–1873. 2010. View Article : Google Scholar : | |
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, et al: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 87:493–506. 1996. View Article : Google Scholar : PubMed/NCBI | |
Rosas HD, Reuter M, Doros G, Lee SY, Triggs T, Malarick K, Fischl B, Salat DH and Hersch SM: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study. Mov Disord. 26:1691–1697. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, et al: PREDICT-HD study of the Huntington Study Group (HSG); REGISTRY study of the European Huntington's Disease Network; HD-MAPS Study Group; COHORT study of the HSG: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 78:690–695. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 490:55–60. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ohlsson C and Sjögren K: Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 26:69–74. 2015. View Article : Google Scholar | |
DelGiorno KE, Tam JW, Hall JC, Thotakura G, Crawford HC and van der Velden AW: Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One. 9:e928072014. View Article : Google Scholar : PubMed/NCBI | |
Whitcomb DC: Genetic aspects of pancreatitis. Annu Rev Med. 61:413–424. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu F, Qu L, Tan Y, Zhang Y and Hu C: L-asparaginase-induced severe acute pancreatitis in an adult with extranodal natural killer/T-cell lymphoma, nasal type: A case report and review of the literature. Oncol Lett. 7:1305–1307. 2014.PubMed/NCBI | |
Kaya I, Citil M, Sozmen M, Karapehlivan M and Cigsar G: Investigation of protective effect of L-carnitine on L-asparaginase-induced acute pancreatic injury in male Balb/c mice. Dig Dis Sci. 2014.PubMed/NCBI | |
Bueno SM, Riquelme S, Riedel CA and Kalergis AM: Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology. 137:28–36. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kafkewitz D and Bendich A: Enzyme-induced asparagine and glutamine depletion and immune system function. Am J Clin Nutr. 37:1025–1030. 1983.PubMed/NCBI | |
Etheredge EE, Shons A, Harris N and Najarian JS: Prolongation of skin xenograft survival by L-asparaginase. Transplantation. 11:353–354. 1971. View Article : Google Scholar : PubMed/NCBI | |
Khan A and Levine S: Further studies on the inhibition of allergic encephalomyelitis by L-asparaginase. J Immunol. 113:367–370. 1974.PubMed/NCBI | |
Friedman H: L-asparaginase induced immunosuppression: Inhibition of bone marrow derived antibody precursor cells. Science. 174:139–141. 1971. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA and Desir GV: The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA. 101:3112–3117. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA and Nath A: Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One. 7:e439502012. View Article : Google Scholar : PubMed/NCBI | |
LaRusch J and Whitcomb DC: Genetics of pancreatitis. Curr Opin Gastroenterol. 27:467–474. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, Wright FA, Rommens JM, Sun L, Pace RG, et al: Genetic modifiers of cystic fibrosis-related diabetes. Diabetes. 62:3627–3635. 2013. View Article : Google Scholar : PubMed/NCBI | |
Santoro N, Colombini A, Silvestri D, Grassi M, Giordano P, Parasole R, Barisone E, Caruso R, Conter V, Valsecchi MG, et al: Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: An AIEOP experience. J Pediatr Hematol Oncol. 35:348–355. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, Cazzaniga G, Horstmann M, Panzer Grümayer R, Cavé H, et al: Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia. 26:902–909. 2012. View Article : Google Scholar : | |
Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA and Desir GV: The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet. 12:551–559. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tu L, Khanna P and Deutsch C: Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J Mol Biol. 426:185–198. 2014. View Article : Google Scholar | |
Kosolapov A and Deutsch C: Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol. 16:405–411. 2009. View Article : Google Scholar : PubMed/NCBI | |
Delaney E, Khanna P, Tu L, Robinson JM and Deutsch C: Determinants of pore folding in potassium channel biogenesis. Proc Natl Acad Sci USA. 111:4620–4625. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, et al: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gray MA: Bicarbonate secretion: It takes two to tango. Nat Cell Biol. 6:292–294. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chang MH, Plata C, Sindic A, Ranatunga WK, Chen AP, Zandi-Nejad K, Chan KW, Thompson J, Mount DB and Romero MF: Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain. J Biol Chem. 284:28306–28318. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 74:1–18. 2012.PubMed/NCBI | |
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV and Gottesman MM: A 'silent' polymorphism in the MDR1 gene changes substrate specificity. Science. 315:525–528. 2007. View Article : Google Scholar | |
Chong PA, Kota P, Dokholyan NV and Forman-Kay JD: Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med. 3:a0095222013. View Article : Google Scholar : PubMed/NCBI | |
LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, et al North American Pancreatitis Study Group: Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet. 10:e10043762014. View Article : Google Scholar : PubMed/NCBI | |
El Khouri E and Touré A: Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): Physiological and pathophysiological relevance. Int J Biochem Cell Biol. 52:58–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A, Thomas PJ, Frizzell RA, Ford RC and Forman-Kay JD: Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra-and intermolecular interactions. Proc Natl Acad Sci USA. 110:E4427–E4436. 2013. View Article : Google Scholar | |
Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, Ratcliff R, Evans MJ and Colledge WH: Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature. 393:79–82. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, Havasi V, Keiles S, Kappes J, Kumar R, Lefkowitz E, et al: The silent codon change I507-ATC->ATT contributes to the severity of the DeltaF508 CFTR channel dysfunction. FASEB J. 27:4630–4645. 2013. View Article : Google Scholar : PubMed/NCBI | |
van der Wijst J, Bindels RJ and Hoenderop JG: Mg2+ homeostasis: The balancing act of TRPM6. Curr Opin Nephrol Hypertens. 23:361–369. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smith JG, Avery CL, Evans DS, Nalls MA, Meng YA, Smith EN, Palmer C, Tanaka T, Mehra R, Butler AM, et al: CARe and COGENT consortia: Impact of ancestry and common genetic variants on QT interval in African Americans. Circ Cardiovasc Genet. 5:647–655. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hermosura MC and Garruto RM: TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? Biochim Biophys Acta. 1772:822–835. 2007. View Article : Google Scholar : PubMed/NCBI | |
Krapivinsky G, Krapivinsky L, Manasian Y and Clapham DE: The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 157:1061–1072. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wrighton KH: Epigenetics: The TRPM7 ion channel modifies histones. Nat Rev Mol Cell Biol. 15:4272014. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Inoue K, Sun H, Leng T, Feng X, Zhu L and Xiong ZG: TRPM7 regulates vascular endothelial cell adhesion and tube formation. Am J Physiol Cell Physiol. 308:C308–C318. 2015. View Article : Google Scholar | |
Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, Sha D, Shen R, Cui YG, Zhang Z, et al: TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett. 356:483–490. 2015. View Article : Google Scholar | |
Hunt RC, Simhadri VL, Iandoli M, Sauna ZE and Kimchi-Sarfaty C: Exposing synonymous mutations. Trends Genet. 30:308–321. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu DF, Yin RX, Cao XL, Chen WX, Aung LH, Wang W, Huang KK, Huang P, Zeng XN and Wu J: Scavenger receptor class B type 1 gene rs5888 single nucleotide polymorphism and the risk of coronary artery disease and ischemic stroke: A case-control study. Int J Med Sci. 10:1771–1777. 2013. View Article : Google Scholar : PubMed/NCBI | |
Constantineau J, Greason E, West M, Filbin M, Kieft JS, Carletti MZ, Christenson LK and Rodriguez A: A synonymous variant in scavenger receptor, class B, type I gene is associated with lower SR-BI protein expression and function. Atherosclerosis. 210:177–182. 2010. View Article : Google Scholar : PubMed/NCBI | |
Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, et al: Global Lipids Genetics Consortium: Discovery and refinement of loci associated with lipid levels. Nat Genet. 45:1274–1283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Meyer JM, Graf GA and van der Westhuyzen DR: New developments in selective cholesteryl ester uptake. Curr Opin Lipidol. 24:386–392. 2013.PubMed/NCBI | |
Nofer JR: Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handb Exp Pharmacol. 224:229–256. 2015. View Article : Google Scholar | |
Tong WH, Pieters R, de Groot-Kruseman HA, Hop WC, Boos J, Tissing WJ and van der Sluis IM: The toxicity of very prolonged courses of PEGasparaginase or Erwinia asparaginase in relation to asparaginase activity, with a special focus on dyslipidemia. Haematologica. 99:1716–1721. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stanislovaitiene D, Lesauskaite V, Zaliuniene D, Smalinskiene A, Gustiene O, Zaliaduonyte-Peksiene D, Tamosiunas A, Luksiene D, Petkeviciene J and Zaliunas R: SCARB1 single nucleotide polymorphism (rs5888) is associated with serum lipid profile and myocardial infarction in an age- and gender-dependent manner. Lipids Health Dis. 12:242013. View Article : Google Scholar : PubMed/NCBI | |
Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, et al: Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 43:60–65. 2011. View Article : Google Scholar : | |
Pośpiech E, Ligęza J, Wilk W, Gołas A, Jaszczyński J, Stelmach A, Ryś J, Blecharczyk A, Wojas-Pelc A, Jura J, et al: Variants of SCARB1 and VDR involved in complex genetic interactions may be implicated in the genetic susceptibility to clear cell renal cell carcinoma. Biomed Res Int. 2015:8604052015. View Article : Google Scholar | |
Suchindran S, Rivedal D, Guyton JR, Milledge T, Gao X, Benjamin A, Rowell J, Ginsburg GS and McCarthy JJ: Genome-wide association study of Lp-PLA(2) activity and mass in the Framingham Heart Study. PLoS Genet. 6:e10009282010. View Article : Google Scholar : PubMed/NCBI | |
Song GJ, Kim SM, Park KH, Kim J, Choi I and Cho KH: SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochem Biophys Res Commun. 457:112–118. 2015. View Article : Google Scholar | |
Gao M, Zhao D, Schouteden S, Sorci-Thomas MG, Van Veldhoven PP, Eggermont K, Liu G, Verfaillie CM and Feng Y: Regulation of high-density lipoprotein on hematopoietic stem/progenitor cells in atherosclerosis requires scavenger receptor type BI expression. Arterioscler Thromb Vasc Biol. 34:1900–1909. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sticozzi C, Belmonte G, Cervellati F, Muresan XM, Pessina F, Lim Y, Forman HJ and Valacchi G: Resveratrol protects SR-B1 levels in keratinocytes exposed to cigarette smoke. Free Radic Biol Med. 69:50–57. 2014. View Article : Google Scholar : PubMed/NCBI | |
Christianson MS and Yates M: Scavenger receptor class B type 1 gene polymorphisms and female fertility. Curr Opin Endocrinol Diabetes Obes. 19:115–120. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meyers KJ, Mares JA, Igo RP Jr, Truitt B, Liu Z, Millen AE, Klein M, Johnson EJ, Engelman CD, Karki CK, et al: Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in age-related eye disease study (CAREDS). Invest Ophthalmol Vis Sci. 55:587–599. 2014. View Article : Google Scholar : | |
Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X and Borel P: Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol Nutr Food Res. 55:691–702. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goncalves A, Margier M, Roi S, Collet X, Niot I, Goupy P, Caris-Veyrat C and Reboul E: Intestinal scavenger receptors are involved in vitamin K1 absorption. J Biol Chem. 289:30743–30752. 2014. View Article : Google Scholar : PubMed/NCBI | |
Major JM, Yu K, Wheeler W, Zhang H, Cornelis MC, Wright ME, Yeager M, Snyder K, Weinstein SJ, Mondul A, et al: Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet. 20:3876–3883. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schulman S and Furie B: How I treat poisoning with vitamin K antagonists. Blood. 125:438–442. 2015. View Article : Google Scholar | |
Ibarrola-Jurado N, Salas-Salvadó J, Martínez-González MA and Bulló M: Dietary phylloquinone intake and risk of type 2 diabetes in elderly subjects at high risk of cardiovascular disease. Am J Clin Nutr. 96:1113–1118. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Schwienbacher C, Lopez LM, Ben-Shlomo Y, Oudot-Mellakh T, Johnson AD, Samani NJ, Basu S, Gögele M, Davies G, et al: Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease. Am J Hum Genet. 91:152–162. 2012. View Article : Google Scholar : PubMed/NCBI | |
Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, et al: Alzheimer's Disease Neuroimaging Initiative: Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol. 72:65–75. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nowak-Göttl U, Wermes C, Junker R, Koch HG, Schobess R, Fleischhack G, Schwabe D and Ehrenforth S: Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT 677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. Blood. 93:1595–1599. 1999.PubMed/NCBI | |
Schmalbach B, Stepanow O, Jochens A, Riedel C, Deuschl G and Kuhlenbäumer G: Determinants of platelet-leukocyte aggregation and platelet activation in stroke. Cerebrovasc Dis. 39:176–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, Serbanovic-Canic J, Elling U, Goodall AH, Labrune Y, et al: New gene functions in megakaryopoiesis and platelet formation. Nature. 480:201–208. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hunault-Berger M, Chevallier P, Delain M, Bulabois CE, Bologna S, Bernard M, Lafon I, Cornillon J, Maakaroun A, Tizon A, et al GOELAMS (Groupe Ouest-Est des Leucémies Aiguës et Maladies du Sang): Changes in antithrombin and fibrinogen levels during induction chemotherapy with L-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and clinical outcome: The CAPELAL study Haematologica. 93:1488–1494. 2008. | |
López Herce Cid J, Martínez A, González M and García S: Diabetic ketoacidosis and hypofibrinogenemia as a complication of the treatment with L-asparaginase of acute lymphoblastic leukemia. Sangre (Barc). 31:195–199. 1986.In Spanish. | |
Alving BM, Barr CF and Tang DB: L-asparaginase: Acute effects on protein synthesis in rabbits with normal and increased fibrinogen production. Blood. 63:823–827. 1984.PubMed/NCBI | |
Brodsky I, Kahn SB, Vash G, Ross EM and Petkov G: Fibrinogen survival with [75Se]Selenomethionine during L-asparaginase therapy. Br J Haematol. 20:477–487. 1971. View Article : Google Scholar : PubMed/NCBI | |
Sleddering MA, Markvoort AJ, Dharuri HK, Jeyakar S, Snel M, Juhasz P, Lynch M, Hines W, Li X, Jazet IM, et al: Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS One. 9:e1128352014. View Article : Google Scholar : PubMed/NCBI | |
Barazzoni R, Kiwanuka E, Zanetti M, Cristini M, Vettore M and Tessari P: Insulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes. Diabetes. 52:1851–1856. 2003. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Zhao J, Madden A, Chen M and Xu H: Complement expression in retinal pigment epithelial cells is modulated by activated macrophages. Exp Eye Res. 112:93–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kallio SP, Jakkula E, Purcell S, Suvela M, Koivisto K, Tienari PJ, Elovaara I, Pirttilä T, Reunanen M, Bronnikov D, et al: Use of a genetic isolate to identify rare disease variants: C7 on 5p associated with MS. Hum Mol Genet. 18:1670–1683. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brudner M, Karpel M, Lear C, Chen L, Yantosca LM, Scully C, Sarraju A, Sokolovska A, Zariffard MR, Eisen DP, et al: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One. 8:e608382013. View Article : Google Scholar : PubMed/NCBI | |
van Vliet SJ, Steeghs L, Bruijns SC, Vaezirad MM, Snijders Blok C, Arenas Busto JA, Deken M, van Putten JP and van Kooyk Y: Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog. 5:e10006252009. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H and Chen W: Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition. 30:1061–1068. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meyre D and Pare G: Genetic dissection of diabetes: Facing the giant. Diabetes. 62:3338–3340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qi L, Parast L, Cai T, Powers C, Gervino EV, Hauser TH, Hu FB and Doria A: Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol. 58:2675–2682. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sandyk R: The relationship between diabetes mellitus and Parkinson's disease. Int J Neurosci. 69:125–130. 1993. View Article : Google Scholar : PubMed/NCBI | |
Calkin CV, Ruzickova M, Uher R, Hajek T, Slaney CM, Garnham JS, O'Donovan MC and Alda M: Insulin resistance and outcome in bipolar disorder. Br J Psychiatry. 206:52–57. 2015. View Article : Google Scholar | |
Cosgrove J, Alty JE and Jamieson S: Cognitive impairment in Parkinson's disease. Postgrad Med J. 91:212–220. 2015. View Article : Google Scholar : PubMed/NCBI | |
Talbot K: Amyotrophic lateral sclerosis: cell vulnerability or system vulnerability? J Anat. 224:45–51. 2014. View Article : Google Scholar | |
Carbutt S, Duff J, Yarnall A, Burn DJ and Hudson G: Variation in complement protein C1q is not a major contributor to cognitive impairment in Parkinson's disease. Neurosci Lett. 594:66–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ressl S, Vu BK, Vivona S, Martinelli DC, Südhof TC and Brunger AT: Structures of C1q-like proteins reveal unique features among the C1q/TNF superfamily. Structure. 23:688–699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sigoillot SM, Iyer K, Binda F, González-Calvo I, Talleur M, Vodjdani G, Isope P and Selimi F: The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar purkinje cells. Cell Rep. 10:820–832. 2015. View Article : Google Scholar | |
Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PM, et al: Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 459:528–533. 2009. View Article : Google Scholar : PubMed/NCBI | |
Malenfant P, Liu X, Hudson ML, Qiao Y, Hrynchak M, Riendeau N, Hildebrand MJ, Cohen IL, Chudley AE, Forster-Gibson C, et al: Association of GTF2i in the Williams-Beuren syndrome critical region with autism spectrum disorders. J Autism Dev Disord. 42:1459–1469. 2012. View Article : Google Scholar | |
Lu RC, Wang H, Tan MS, Yu JT and Tan L: TMEM106B and APOE polymorphisms interact to confer risk for late-onset Alzheimer's disease in Han Chinese. J Neural Transm. 121:283–287. 2014. View Article : Google Scholar | |
Stagi M, Klein ZA, Gould TJ, Bewersdorf J and Strittmatter SM: Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci. 61:226–240. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paoletti C and Hayes DF: Molecular testing in breast cancer. Annu Rev Med. 65:95–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma CX, Reinert T, Chmielewska I and Ellis MJ: Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 15:261–275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nollau P, Wolters-Eisfeld G, Mortezai N, Kurze AK, Klampe B, Debus A, Bockhorn M, Niendorf A and Wagener C: Protein domain histochemistry (PDH): binding of the carbohydrate recognition domain (CRD) of recombinant human glycoreceptor CLEC10A (CD301) to formalin-fixed, paraffin-embedded breast cancer tissues. J Histochem Cytochem. 61:199–205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Salto-Tellez M, Palanisamy N, Ganesan K, Hou Q, Tan LK, Sii LH, Ito K, Tan B, Wu J, et al: Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes Chromosomes Cancer. 46:288–301. 2007. View Article : Google Scholar | |
Ahmeti KB, Ajroud-Driss S, Al-Chalabi A, Andersen PM, Armstrong J, Birve A, Blauw HM, Brown RH, Bruijn L, Chen W, et al: Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging. 34(357): e7–e19. 2013. | |
Brady OA, Zheng Y, Murphy K, Huang M and Hu F: The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 22:685–695. 2013. View Article : Google Scholar : | |
Sergouniotis PI, Chakarova C, Murphy C, Becker M, Lenassi E, Arno G, Lek M, MacArthur DG, Bhattacharya SS, Moore AT, et al: UCL-Exomes Consortium: Biallelic variants in TTLL5, encoding a tubulin glutamylase, cause retinal dystrophy. Am J Hum Genet. 94:760–769. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S, Thorleifsson G, Mitchell BD, Assimes TL, Levi C, et al: METASTROKE Consortium; CARDIoGRAM Consortium; C4D Consortium; International Stroke Genetics Consortium: Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants. Stroke. 45:24–36. 2014. View Article : Google Scholar : | |
Hartmaier RJ, Richter AS, Gillihan RM, Sallit JZ, McGuire SE, Wang J, Lee AV, Osborne CK, O'Malley BW, Brown PH, et al: A SNP in steroid receptor coactivator-1 disrupts a GSK3β phosphorylation site and is associated with altered tamoxifen response in bone. Mol Endocrinol. 26:220–227. 2012. View Article : Google Scholar : | |
Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, et al: GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet. 45:362–370. 370e1–2. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kriegel MA, Rathinam C and Flavell RA: E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci USA. 106:16770–16775. 2009. View Article : Google Scholar : PubMed/NCBI | |
MacKenzie DA, Schartner J, Lin J, Timmel A, Jennens-Clough M, Fathman CG and Seroogy CM: GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem. 282:9696–9702. 2007. View Article : Google Scholar : PubMed/NCBI | |
Seroogy CM1, Soares L, Ranheim EA, Su L, Holness C, Bloom D and Fathman CG: The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 173:79–85. 2004. View Article : Google Scholar : PubMed/NCBI | |
No authors listed. A death attributed to antitoxin. Boston Med Surg J. 132:337–341. 1895. | |
Hunt EL: Death from allergic shock. N Engl J Med. 228:502–507. 1943. View Article : Google Scholar | |
Kortright JL: Practical experiences with antitoxin. Brooklyn MJ (Medical Society of the County of Kings). 10:87–101. 1896. | |
Gillis C, Gouel-Chéron A, Jönsson F and Bruhns P: Contribution of human FcγRs to disease with evidence from human polymorphisms and transgenic animal studies. Front Immunol. 5:2542014. View Article : Google Scholar | |
Lu W, Lin C and Li Y: Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal. 26:1303–1309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malinauskas T and Jones EY: Extracellular modulators of Wnt signalling. Curr Opin Struct Biol. 29:77–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Joiner DM, Ke J, Zhong Z, Xu HE and Williams BO: LRP5 and LRP6 in development and disease. Trends Endocrinol Metab. 24:31–39. 2013. View Article : Google Scholar : | |
Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Charlat O, Zamponi R, Yang Y and Cong F: Dishevelled Promotes Wnt Receptor Degradation through Recruitment of ZNRF3/RNF43 E3 Ubiquitin Ligases. Mol Cell. 58:522–533. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holland J, Fasanello S and Onuma T: Psychiatric symptoms associated with L-asparaginase administration. J Psychiatr Res. 10:105–113. 1974. View Article : Google Scholar : PubMed/NCBI | |
Feinberg WM and Swenson MR: Cerebrovascular complications of L-asparaginase therapy. Neurology. 38:127–133. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rodrigo R, Cauli O, Boix J, ElMlili N, Agusti A and Felipo V: Role of NMDA receptors in acute liver failure and ammonia toxicity: Therapeutical implications. Neurochem Int. 55:113–118. 2009. View Article : Google Scholar : PubMed/NCBI | |
Davidovic L, Jaglin XH, Lepagnol-Bestel AM, Tremblay S, Simonneau M, Bardoni B and Khandjian EW: The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet. 16:3047–3058. 2007. View Article : Google Scholar : PubMed/NCBI | |
Darnell JC and Klann E: The translation of translational control by FMRP: Therapeutic targets for FXS. Nat Neurosci. 16:1530–1536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Poliakov E, Koonin EV and Rogozin IB: Impairment of translation in neurons as a putative causative factor for autism. Biol Direct. 9:162014. View Article : Google Scholar : PubMed/NCBI | |
Cauchi RJ: Gem depletion: Amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther. 20:574–581. 2014. View Article : Google Scholar : PubMed/NCBI | |
Häggmark A, Mikus M, Mohsenchian A, Hong MG, Forsström B, Gajewska B, Barańczyk-Kuźma A, Uhlén M, Schwenk JM, Kuźma-Kozakiewicz M, et al: Plasma profiling reveals three proteins associated to amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 1:544–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ingre C, Roos PM, Piehl F, Kamel F and Fang F: Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 7:181–193. 2015.PubMed/NCBI | |
Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA, Copeland NG, Troncoso JC, Pletnikov M, Dawson TM, et al: Synphilin-1 attenuates neuronal degeneration in the A53T alpha-synuclein transgenic mouse model. Hum Mol Genet. 19:2087–2098. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zeng W, Kim MS, Allen PB, Greengard P and Muallem S: Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors. EMBO J. 26:2768–2776. 2007. View Article : Google Scholar : PubMed/NCBI | |
Latourelle JC, Pankratz N, Dumitriu A, Wilk JB, Goldwurm S, Pezzoli G, Mariani CB, DeStefano AL, Halter C, Gusella JF, et al: PROGENI Investigators, Coordinators and Molecular Genetic Laboratories; GenePD Investigators, Coordinators and Molecular Genetic Laboratories: Genomewide association study for onset age in Parkinson disease. BMC Med Genet. 10:982009. View Article : Google Scholar | |
Lalla E and Papapanou PN: Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat Rev Endocrinol. 7:738–748. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Feingold E, Wang X, Weeks DE, Lee M, Cuenco DT, Broffitt B, Weyant RJ, Crout R, McNeil DW, et al: Genome-wide association study of primary dentition pit-and-fissure and smooth surface caries. Caries Res. 48:330–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Teumer A, Holtfreter B, Völker U, Petersmann A, Nauck M, Biffar R, Völzke H, Kroemer HK, Meisel P, Homuth G, et al: Genome-wide association study of chronic periodontitis in a general German population. J Clin Periodontol. 40:977–985. 2013. View Article : Google Scholar : PubMed/NCBI | |
Elks CE, Perry JR, Sulem P, Chasman DI, Franceschini N, He C, Lunetta KL, Visser JA, Byrne EM, Cousminer DL, et al: GIANT Consortium: Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 42:1077–1085. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haas J, Beer AG, Widschwendter P, Oberdanner J, Salzmann K, Sarg B, Lindner H, Herz J, Patsch JR and Marschang P: LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE-carrying lipoproteins. Atherosclerosis. 216:342–347. 2011. View Article : Google Scholar : PubMed/NCBI | |
Poduslo SE, Huang R and Spiro A III: A genome screen of successful aging without cognitive decline identifies LRP1B by haplotype analysis. Am J Med Genet B Neuropsychiatr Genet. 153B:114–119. 2010. | |
Scheffer DI, Zhang DS, Shen J, Indzhykulian A, Karavitaki KD, Xu YJ, Wang Q, Lin JJ, Chen ZY and Corey DP: XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia. Cell Rep. 10:1811–1818. 2015. View Article : Google Scholar : PubMed/NCBI | |
Francis SP, Krey JF, Krystofiak ES, Cui R, Nanda S, Xu W, Kachar B, Barr-Gillespie PG and Shin JB: A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci. 35:1999–2014. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J and Kreek MJ: Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet. 20:207–214. 2010. View Article : Google Scholar : PubMed/NCBI | |
McCalmon SA, Desjardins DM, Ahmad S, Davidoff KS, Snyder CM, Sato K, Ohashi K, Kielbasa OM, Mathew M, Ewen EP, et al: Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ Res. 106:952–960. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Lin JL, Erives AJ, Lin CI and Lin JJ: New insights into the roles of Xin repeat-containing proteins in cardiac development, function, and disease. Int Rev Cell Mol Biol. 310:89–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka R, Abe S, Tokoro F, Arai M, Noda T, Watanabe S, Horibe H, Fujimaki T, Oguri M, Kato K, et al: Association of six genetic variants with myocardial infarction. Int J Mol Med. 35:1451–1459. 2015.PubMed/NCBI | |
Roy A, Guatimosim S, Prado VF, Gros R and Prado MA: Cholinergic activity as a new target in diseases of the heart. Mol Med. 20:527–537. 2014.PubMed/NCBI | |
Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, et al: Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 56:205–218. 2014. View Article : Google Scholar : PubMed/NCBI | |
Treviño LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi SC, et al: Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 41:1001–1005. 2009. View Article : Google Scholar : PubMed/NCBI | |
Seghatoleslam A, Monabati A, Bozorg-Ghalati F, Nikseresht M, Bordbar MR, Rahvar M and Owji AA: Expression of UBE2Q2, a putative member of the ubiquitin-conjugating enzyme family in pediatric acute lymphoblastic leukemia. Arch Iran Med. 15:352–355. 2012.PubMed/NCBI | |
Velma V, Broome HJ and Hebert MD: Regulated specific proteolysis of the Cajal body marker protein coilin. Chromosoma. 121:629–642. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gubanova E, Brown B, Ivanov SV, Helleday T, Mills GB, Yarbrough WG and Issaeva N: Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival. Clin Cancer Res. 18:1257–1267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Diamond G, Cedar H and Marcus M: A temperature-sensitive mutation in asparaginyl-tRNA synthetase causes cell-cycle arrest in early S phase. Exp Cell Res. 184:53–60. 1989. View Article : Google Scholar : PubMed/NCBI | |
Reitzer LJ and Magasanik B: Asparagine synthetases of Klebsiella aerogenes: Properties and regulation of synthesis. J Bacteriol. 151:1299–1313. 1982.PubMed/NCBI | |
Srikhanta YN, Atack JM, Beacham IR and Jennings MP: Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli. Biochem Biophys Res Commun. 436:362–365. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brigotti M, Rambelli F, Nanetti A, Zamboni M, Sperti S and Montanaro L: Isolation of an inhibitor of cell-free protein synthesis from Salmonella enteritidis. Microbiologica. 13:55–60. 1990.PubMed/NCBI | |
Bartalena L, Martino E, Antonelli A, Pacchiarotti A, Robbins J and Pinchera A: Effect of the antileukemic agent L-asparaginase on thyroxine-binding globulin and albumin synthesis in cultured human hepatoma (HEP G2) cells. Endocrinology. 119:1185–1188. 1986. View Article : Google Scholar : PubMed/NCBI | |
Stahl PD and Wainszelbaum MJ: Human-specific genes may offer a unique window into human cell signaling. Sci Signal. 2:pe592009.PubMed/NCBI | |
Kong C, Lange JJ, Samovski D, Su X, Liu J, Sundaresan S and Stahl PD: Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun. 434:388–393. 2013. View Article : Google Scholar : PubMed/NCBI | |
Frasa MA, Koessmeier KT, Ahmadian MR and Braga VM: Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol. 13:67–73. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S and Li J: PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res. 62:5420–5424. 2002.PubMed/NCBI | |
Seaman MN, Harbour ME, Tattersall D, Read E and Bright N: Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci. 122:2371–2382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Popovic D and Dikic I: TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 15:392–401. 2014. View Article : Google Scholar : PubMed/NCBI | |
Frittoli E, Palamidessi A, Pizzigoni A, Lanzetti L, Garrè M, Troglio F, Troilo A, Fukuda M, Di Fiore PP, Scita G, et al: The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell. 19:1304–1316. 2008. View Article : Google Scholar : PubMed/NCBI | |
He Z, Tian T, Guo D, Wu H, Chen Y, Zhang Y, Wan Q, Zhao H, Wang C, Shen H, et al: Cytoplasmic retention of a nucleocytoplasmic protein TBC1D3 by microtubule network is required for enhanced EGFR signaling. PLoS One. 9:e941342014. View Article : Google Scholar : PubMed/NCBI | |
Scheufele F, Wolf B, Kruse M, Hartmann T, Lempart J, Muehlich S, Pfeiffer AF, Field LJ, Charron MJ, Pan ZQ, et al: Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling. Cell Signal. 26:233–239. 2014. View Article : Google Scholar : | |
Wainszelbaum MJ, Liu J, Kong C, Srikanth P, Samovski D, Su X and Stahl PD: TBC1D3, a hominoid-specific gene, delays IRS-1 degradation and promotes insulin signaling by modulating p70 S6 kinase activity. PLoS One. 7:e312252012. View Article : Google Scholar : PubMed/NCBI | |
Copps KD and White MF: Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 55:2565–2582. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chantranupong L, Wolfson RL and Sabatini DM: Nutrient-sensing mechanisms across evolution. Cell. 161:67–83. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mirkin SM: Expandable DNA repeats and human disease. Nature. 447:932–940. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shaw G and Kamen R: A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 46:659–667. 1986. View Article : Google Scholar : PubMed/NCBI | |
Uversky VN: Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J. 282:1182–1189. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R and Peti W: Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol. 17:459–464. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K, Satoh K, Nishioka H, Matsuura Y, Mizoguchi A and Takai Y: Neurabin: A novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol. 139:951–961. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu Y, Cottingham C, McMahon L, Jiao K, Greengard P and Wang Q: Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. J Neurosci. 32:2683–2695. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim SS, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ and Zhuo M: Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain. 4:62011. View Article : Google Scholar : PubMed/NCBI | |
Hu XD, Huang Q, Roadcap DW, Shenolikar SS and Xia H: Actin-associated neurabin-protein phosphatase-1 complex regulates hippocampal plasticity. J Neurochem. 98:1841–1851. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu XD, Huang Q, Yang X and Xia H: Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus. J Neurosci. 27:4674–4686. 2007. View Article : Google Scholar : PubMed/NCBI | |
Allen PB, Zachariou V, Svenningsson P, Lepore AC, Centonze D, Costa C, Rossi S, Bender G, Chen G, Feng J, et al: Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience. 140:897–911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu LJ, Ren M, Wang H, Kim SS, Cao X and Zhuo M: Neurabin contributes to hippocampal long-term potentiation and contextual fear memory. PLoS One. 3:e14072008. View Article : Google Scholar : PubMed/NCBI | |
Finalet Ferreiro J, Rouhigharabaei L, Urbankova H, van der Krogt JA, Michaux L, Shetty S, Krenacs L, Tousseyn T, De Paepe P, Uyttebroeck A, et al: Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One. 9:e1029772014. View Article : Google Scholar : PubMed/NCBI | |
Rowell JP, Simpson KL, Stott K, Watson M and Thomas JO: HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure. 20:2014–2024. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teufel DP, Freund SM, Bycroft M and Fersht AR: Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA. 104:7009–7014. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, Seyfried NT, Hu WT, Liu Z, Wang JZ, et al: Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nat Med. 20:1254–1262. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hsieh JJ, Cheng EH and Korsmeyer SJ: Taspase1: A threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell. 115:293–303. 2003. View Article : Google Scholar : PubMed/NCBI | |
Aleksandrov AA, Kota P, Aleksandrov LA, He L, Jensen T, Cui L, Gentzsch M, Dokholyan NV and Riordan JR: Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR. J Mol Biol. 401:194–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, et al: Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem. 280:1346–1353. 2005. View Article : Google Scholar | |
Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, et al: X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 381:335–341. 1996. View Article : Google Scholar : PubMed/NCBI | |
Dho SH, Deverman BE, Lapid C, Manson SR, Gan L, Riehm JJ, Aurora R, Kwon KS and Weintraub SJ: Control of cellular Bcl-xL levels by deamidation-regulated degradation. PLoS Biol. 11:e10015882013. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Kang SU, Jeon Y, Park JW, You JS, Ha SW, Bae N, Lubec G, Kwon SH, Lee JS, et al: Protein L-isoaspartyl methyltransferase regulates p53 activity. Nat Commun. 3:9272012. View Article : Google Scholar : PubMed/NCBI | |
Dawson R, Müller L, Dehner A, Klein C, Kessler H and Buchner J: The N-terminal domain of p53 is natively unfolded. J Mol Biol. 332:1131–1141. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schon O, Friedler A, Freund S and Fersht AR: Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. J Mol Biol. 336:197–202. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al: The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 295:L240–L263. 2008. View Article : Google Scholar : PubMed/NCBI | |
Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, et al: Inflammation and Host Response to Injury, Large Scale Collaborative Research Program: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 110:3507–3512. 2013. View Article : Google Scholar | |
Patterson PH: Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 204:313–321. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K, Oda K, Motoyama N and Nakajima T: A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ. 6:314–325. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Loyd MR, Randall MS, Waddell MB, Kriwacki RW and Ney PA: A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy. 8:1325–1332. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perutz M: Polar zippers: their role in human disease. Protein Sci. 3:1629–1637. 1994. View Article : Google Scholar : PubMed/NCBI | |
Perutz MF, Pope BJ, Owen D, Wanker EE and Scherzinger E: Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA. 99:5596–5600. 2002. View Article : Google Scholar : PubMed/NCBI | |
Simon M and Hancock JM: Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 10:R592009. View Article : Google Scholar : PubMed/NCBI | |
Tompa P: Intrinsically unstructured proteins evolve by repeat expansion. Bioessays. 25:847–855. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li L and Moore PK: An overview of the biological significance of endogenous gases: New roles for old molecules. Biochem Soc Trans. 35:1138–1141. 2007. View Article : Google Scholar : PubMed/NCBI | |
Levine SM, Rosen A and Casciola-Rosen LA: Anti-aminoacyl tRNA synthetase immune responses: Insights into the pathogenesis of the idiopathic inflammatory myopathies. Curr Opin Rheumatol. 15:708–713. 2003. View Article : Google Scholar : PubMed/NCBI | |
Beaulande M, Tarbouriech N and Härtlein M: Human cytosolic asparaginyl-tRNA synthetase: cDNA sequence, functional expression in Escherichia coli and characterization as human autoantigen. Nucleic Acids Res. 26:521–524. 1998. View Article : Google Scholar : PubMed/NCBI | |
Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Härtlein M, Kron M, Yang D, et al: Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med. 196:781–791. 2002. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Kim SH, Choi HS, Rhee Y and Lim SK: Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone. 45:994–1003. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kron MA, Wang C, Vodanovic-Jankovic S, Howard OM and Kuhn LA: Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase. Mol Biochem Parasitol. 185:66–69. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C and De Virgilio C: Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 46:105–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A and Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 296:E592–E602. 2009. View Article : Google Scholar : | |
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C and Avruch J: Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 273:14484–14494. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 347:188–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rebsamen M, Pochini L, Stasyk T, de Araújo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, et al: SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 519:477–481. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bar-Peled L and Sabatini DM: Regulation of mTORC1 by amino acids. Trends Cell Biol. 24:400–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Efeyan A, Zoncu R and Sabatini DM: Amino acids and mTORC1: From lysosomes to disease. Trends Mol Med. 18:524–533. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abraham RT: Cell biology. Making sense of amino acid sensing. Science. 347:128–129. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weng L, Quinlivan E, Gong Y, Beitelshees AL, Shahin MH, Turner ST, Chapman AB, Gums JG, Johnson JA, Frye RF, et al: Association of branched and aromatic amino acids levels with metabolic syndrome and impaired fasting glucose in hypertensive patients. Metab Syndr Relat Disord. 13:195–202. 2015. View Article : Google Scholar : PubMed/NCBI | |
Björkegren JL, Kovacic JC, Dudley JT and Schadt EE: Genome-wide significant loci: How important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol. 65:830–845. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Bailey SD and Lupien M: Laying a solid foundation for Manhattan - 'setting the functional basis for the post-GWAS era'. Trends Genet. 30:140–149. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Gregersen PK, Worthington J, Klareskog L, Raychaudhuri S, et al: Quantifying missing heritability at known GWAS loci. PLoS Genet. 9:e10039932013. View Article : Google Scholar | |
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al: Finding the missing heritability of complex diseases. Nature. 461:747–753. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cross-Disorder Group of the Psychiatric Genomics Consortium: Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet. 381:1371–1379. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, Bibel M and Barde YA: Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 467:59–63. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoon K, Jang HD and Lee SY: Direct interaction of Smac with NADE promotes TRAIL-induced apoptosis. Biochem Biophys Res Commun. 319:649–654. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang CK, Stein PB, Liu J, Wang Z, Yang R, Cho JH, Gregersen PK, Aerts JM, Zhao H, Pastores GM, et al: Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hematol. 87:377–383. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bultron G, Kacena K, Pearson D, Boxer M, Yang R, Sathe S, Pastores G and Mistry PK: The risk of Parkinson's disease in type 1 Gaucher disease. J Inherit Metab Dis. 33:167–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Urano M, Nagao T, Miyabe S, Ishibashi K, Higuchi K and Kuroda M: Characterization of mammary analogue secretory carcinoma of the salivary gland: Discrimination from its mimics by the presence of the ETV6-NTRK3 translocation and novel surrogate markers. Hum Pathol. 46:94–103. 2015. View Article : Google Scholar | |
Lannon CL and Sorensen PH: ETV6-NTRK3: A chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol. 15:215–223. 2005. View Article : Google Scholar : PubMed/NCBI | |
Genevois AL, Ichim G, Coissieux MM, Lambert MP, Lavial F, Goldschneider D, Jarrosson-Wuilleme L, Lepinasse F, Gouysse G, Herceg Z, et al: Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci USA. 110:3017–3022. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD and Grady WM: NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet. 9:e10035522013. View Article : Google Scholar : PubMed/NCBI | |
Ivanov SV, Panaccione A, Brown B, Guo Y, Moskaluk CA, Wick MJ, Brown JL, Ivanova AV, Issaeva N, El-Naggar AK, et al: TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene. 32:3698–3710. 2013. View Article : Google Scholar | |
Kim MS, Kim GM, Choi YJ, Kim HJ, Kim YJ and Jin W: TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1. Mol Cells. 36:177–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weinkauf C, Salvador R and Pereiraperrin M: Neurotrophin receptor TrkC is an entry receptor for Trypanosoma cruzi in neural, glial, and epithelial cells. Infect Immun. 79:4081–4087. 2011. View Article : Google Scholar : PubMed/NCBI | |
Capewell P, Cooper A, Clucas C, Weir W and Macleod A: A co-evolutionary arms race: Trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology. 142(Suppl 1): S108–S119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N and Marks AR: PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell. 101:365–376. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, He M, Mo Z, Wu C, Yang H, Yu D, Yang X, Zhang X, Wang Y, Sun J, et al: A genome wide association study identifies common variants associated with lipid levels in the Chinese population. PLoS One. 8:e824202013. View Article : Google Scholar | |
Del-Aguila JL, Beitelshees AL, Cooper-Dehoff RM, Chapman AB, Gums JG, Bailey K, Gong Y, Turner ST, Johnson JA and Boerwinkle E: Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J. 14:35–40. 2014. View Article : Google Scholar | |
Jeong SW, Chung M, Park SJ, Cho SB and Hong KW: Genome-wide association study of metabolic syndrome in koreans. Genomics Inform. 12:187–194. 2014. View Article : Google Scholar | |
Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 447:661–678. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eirís N, González-Lara L, Santos-Juanes J, Queiro R, Coto E and Coto-Segura P: Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J Dermatol Sci. 75:167–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Cai ZR, Zhang B, Cai X, Li W, Guo Z and Ma L: Functional polymorphisms in interleukin-23 receptor and susceptibility to coronary artery disease. DNA Cell Biol. 33:891–897. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, Kawagoe T, Ito N, Kera J, Okada E, Yatsu K, et al: Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet's disease susceptibility loci. Nat Genet. 42:703–706. 2010. View Article : Google Scholar : PubMed/NCBI | |
Daryabor G, Mahmoudi M, Jamshidi A, Nourijelyani K, Amirzargar A, Ahmadzadeh N, Farhadi E and Nicknam MH: Determination of IL-23 receptor gene polymorphism in Iranian patients with ankylosing spondylitis. Eur Cytokine Netw. 25:24–29. 2014.PubMed/NCBI | |
Zhang F, Liu H, Chen S, Low H, Sun L, Cui Y, Chu T, Li Y, Fu X, Yu Y, et al: Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet. 43:1247–1251. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hornakova T, Staerk J, Royer Y, Flex E, Tartaglia M, Constantinescu SN, Knoops L and Renauld JC: Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers. J Biol Chem. 284:6773–6781. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leonard WJ: The defective gene in X-linked severe combined immunodeficiency encodes a shared interleukin receptor subunit: Implications for cytokine pleiotropy and redundancy. Curr Opin Immunol. 6:631–635. 1994. View Article : Google Scholar : PubMed/NCBI | |
Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y, Ni M, Meyer CA, Igarashi K, Kanno J, et al: PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol. 13:668–675. 2011. View Article : Google Scholar : PubMed/NCBI | |
Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JA, et al: Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 41:1006–1010. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chokkalingam AP, Hsu LI, Metayer C, Hansen HM, Month SR, Barcellos LF, Wiemels JL and Buffler PA: Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control. 24:1789–1795. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Cheng C, Devidas M, Pei D, Fan Y, Yang W, Neale G, Scheet P, Burchard EG, Torgerson DG, et al: ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol. 30:751–757. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez-Camino Á, López-López E, Martín-Guerrero I, Sánchez-Toledo J, García de Ann N, Carboné Bañeres A, García-Miguel P, Navajas A and García-Orad Á: Intron 3 of the ARID5B gene: A hot spot for acute lymphoblastic leukemia susceptibility. J Cancer Res Clin Oncol. 139:1879–1886. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo LM, Xi JS, Ma Y, Shao L, Nie CL and Wang GJ: ARID5B gene rs10821936 polymorphism is associated with childhood acute lymphoblastic leukemia: a meta-analysis based on 39,116 subjects. Tumour Biol. 35:709–713. 2014. View Article : Google Scholar | |
Lin CY, Li MJ, Chang JG, Liu SC, Weng T, Wu KH, Yang SF, Huang FK, Lo WY and Peng CT: High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis. 52:140–145. 2014. View Article : Google Scholar | |
Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, et al: NEIGHBOR Consortium: Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 45:155–163. 2013. View Article : Google Scholar : PubMed/NCBI | |
Engel SM, Joubert BR, Wu MC, Olshan AF, Håberg SE, Ueland PM, Nystad W, Nilsen RM, Vollset SE, Peddada SD, et al: Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort. Am J Epidemiol. 179:834–842. 2014. View Article : Google Scholar : PubMed/NCBI | |
Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, et al: Wellcome Trust Case Control Consortium: Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 41:666–676. 2009. View Article : Google Scholar : PubMed/NCBI | |
Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Kawaguchi T, Stahl EA, Kurreeman FA, Nishida N, et al: Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet. 44:511–516. 2012. View Article : Google Scholar : PubMed/NCBI | |
Drago A, Giegling I, Schäfer M, Hartmann AM, Konte B, Friedl M, Serretti A and Rujescu D: Genome-wide association study supports the role of the immunological system and of the neurodevelopmental processes in response to haloperidol treatment. Pharmacogenet Genomics. 24:314–319. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, Hirankarn N, et al: Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet. 92:41–51. 2013. View Article : Google Scholar : PubMed/NCBI | |
Whitson RH, Tsark W, Huang TH and Itakura K: Neonatal mortality and leanness in mice lacking the ARID transcription factor Mrf-2. Biochem Biophys Res Commun. 312:997–1004. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yamakawa T, Sugimoto K, Whitson RH and Itakura K: Modulator recognition factor-2 regulates triglyceride metabolism in adipocytes. Biochem Biophys Res Commun. 391:277–281. 2010. View Article : Google Scholar | |
Wang G, Watanabe M, Imai Y, Hara K, Manabe I, Maemura K, Horikoshi M, Ozeki A, Itoh C, Sugiyama T, et al: Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population. J Hum Genet. 57:727–733. 2012. View Article : Google Scholar : PubMed/NCBI | |
Urayama KY, Chokkalingam AP, Manabe A and Mizutani S: Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia. Int J Hematol. 97:3–19. 2013. View Article : Google Scholar | |
Prakash T, Sharma VK, Adati N, Ozawa R, Kumar N, Nishida Y, Fujikake T, Takeda T and Taylor TD: Expression of conjoined genes: Another mechanism for gene regulation in eukaryotes. PLoS One. 5:e132842010. View Article : Google Scholar : PubMed/NCBI | |
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W and Bryant SH: The NCBI BioSystems database. Nucleic Acids Res. 38:D492–D496. 2010. View Article : Google Scholar : | |
Parge HE, Arvai AS, Murtari DJ, Reed SI and Tainer JA: Human CksHs2 atomic structure: A role for its hexameric assembly in cell cycle control. Science. 262:387–395. 1993. View Article : Google Scholar : PubMed/NCBI | |
Liberal V, Martinsson-Ahlzén HS, Liberal J, Spruck CH, Widschwendter M, McGowan CH and Reed SI: Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. Proc Natl Acad Sci USA. 109:2754–2759. 2012. View Article : Google Scholar : | |
Agirre X, Román-Gómez J, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Navarro G, Vázquez I, Zalacain M, Calasanz MJ, Heiniger A, et al: ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene. 25:1862–1870. 2006. View Article : Google Scholar | |
Khattar V and Thottassery JV: Cks1: Structure, emerging roles and implications in multiple cancers. J Cancer Ther. 4:1341–1354. 2013. View Article : Google Scholar | |
Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, et al: Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS. 122:206–214. 2014. View Article : Google Scholar | |
Vigneron AM and Vousden KH: An indirect role for ASPP1 in limiting p53-dependent p21 expression and cellular senescence. EMBO J. 31:471–480. 2012. View Article : Google Scholar : | |
Valaperta R, Rizzo V, Lombardi F, Verdelli C, Piccoli M, Ghiroldi A, Creo P, Colombo A, Valisi M, Margiotta E, et al: Adenine phosphoribosyltransferase (APRT) deficiency: Identification of a novel nonsense mutation. BMC Nephrol. 15:1022014. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim L, Aladle D, Mansour A, Hammad A, Al Wakeel AA and Abd El-Hameed SA: Expression and prognostic significance of livin/BIRC7 in childhood acute lymphoblastic leukemia. Med Oncol. 31:9412014. View Article : Google Scholar : PubMed/NCBI | |
Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ and McLoughlin RM: Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 8:e10030922012. View Article : Google Scholar | |
Hawkes WC, Wang TT, Alkan Z, Richter BD and Dawson K: Selenoprotein W modulates control of cell cycle entry. Biol Trace Elem Res. 131:229–244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pekarsky Y, Drusco A, Kumchala P, Croce CM and Zanesi N: The long journey of TCL1 transgenic mice: Lessons learned in the last 15 years. Gene Expr. 16:129–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chalouhi N, Theofanis T, Starke RM, Zanaty M, Jabbour P, Dooley SA and Hasan D: Potential role of granulocyte-monocyte colony-stimulating factor in the progression of intracranial aneurysms. DNA Cell Biol. 34:78–81. 2015. View Article : Google Scholar | |
Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin SY, Richards HB, Soranzo N, et al: GIANT Consortium; MAGIC Investigators; DIAGRAM Consortium; MuTHER Consortium: Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 43:561–564. 2011. View Article : Google Scholar : PubMed/NCBI |