1
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 59:225–249.
2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hawk ET and Levin B: Colorectal cancer
prevention. J Clin Oncol. 23:378–391. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brabletz T, Hlubek F, Spaderna S,
Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and
metastasis in colorectal cancer: Epithelial-mesenchymal transition,
mesenchymal-epithelial transition, stem cells and beta-catenin.
Cells Tissues Organs. 179:56–65. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Wu Z, Martin KO, Javitt NB and Chiang JY:
Structure and functions of human oxysterol 7alpha-hydroxylase cDNAs
and gene CYP7B1. J Lipid Res. 40:2195–2203. 1999.PubMed/NCBI
|
7
|
Sulcová J and Stárka L: Characterisation
of microsomal dehydroepiandrosterone 7-hydroxylase from rat liver.
Steroids. 12:113–126. 1968. View Article : Google Scholar : PubMed/NCBI
|
8
|
Norlin M and Wikvall K: Biochemical
characterization of the 7alpha-hydroxylase activities towards
27-hydroxycholesterol and dehydroepiandrosterone in pig liver
microsomes. Biochim Biophys Acta. 1390:269–281. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shoda J, Toll A, Axelson M, Pieper F,
Wikvall K and Sjövall J: Formation of 7 alpha- and 7
beta-hydroxylated bile acid precursors from 27-hydroxycholesterol
in human liver microsomes and mitochondria. Hepatology. 17:395–403.
1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Weihua Z, Lathe R, Warner M and Gustafsson
JA: An endocrine pathway in the prostate, ERbeta, AR,
5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate
growth. Proc Natl Acad Sci USA. 99:13589–13594. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Norlin M: Expression of key enzymes in
bile acid biosynthesis during development: CYP7B1-mediated
activities show tissue-specific differences. J Lipid Res.
43:721–731. 2002.PubMed/NCBI
|
12
|
Martin C, Ross M, Chapman KE, Andrew R,
Bollina P, Seckl JR and Habib FK: CYP7B generates a selective
estrogen receptor beta agonist in human prostate. J Clin Endocrinol
Metab. 89:2928–2935. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rose KA, Stapleton G, Dott K, Kieny MP,
Best R, Schwarz M, Russell DW, Björkhem I, Seckl J and Lathe R:
Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of
neurosteroids 7alpha-hydroxy dehydroepiandrosterone and
7alpha-hydroxy pregnenolone. Proc Natl Acad Sci USA. 94:4925–4930.
1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dulos J, Verbraak E, Bagchus WM, Boots AM
and Kaptein A: Severity of murine collagen-induced arthritis
correlates with increased CYP7B activity: Enhancement of
dehydroepiandrosterone metabolism by interleukin-1beta. Arthritis
Rheum. 50:3346–3353. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rainey WE, Rehman KS and Carr BR: The
human fetal adrenal: Making adrenal androgens for placental
estrogens. Semin Reprod Med. 22:327–336. 2004. View Article : Google Scholar
|
16
|
Kim SB, Hill M, Kwak YT, Hampl R, Jo DH
and Morfin R: Neurosteroids: Cerebrospinal fluid levels for
Alzheimer's disease and vascular dementia diagnostics. J Clin
Endocrinol Metab. 88:5199–5206. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Katyare SS, Modi HR and Patel MA:
Dehydroepiandrosterone treatment alters lipid/phospholipid profiles
of rat brain and liver mitochondria. Curr Neurovasc Res. 3:273–279.
2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mayer D and Forstner K: Impact of
dehydroepiandrosterone on hepatocarcinogenesis in the rat (Review).
Int J Oncol. 25:1021–1030. 2004.PubMed/NCBI
|
19
|
Nelson ER, Wardell SE, Jasper JS, Park S,
Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V,
et al: 27-Hydroxycholesterol links hypercholesterolemia and breast
cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wu Q, Ishikawa T, Sirianni R, Tang H,
McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA,
et al: 27-Hydroxycholesterol promotes cell-autonomous, ER-positive
breast cancer growth. Cell Rep. 5:637–645. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Anderson DM, Anderson KM, Chang CL,
Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM,
Liou J, Bassel-Duby R and Olson EN: A micropeptide encoded by a
putative long noncoding RNA regulates muscle performance. Cell.
160:595–606. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rossi JJ: New hope for a microRNA therapy
for liver cancer. Cell. 137:990–992. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kota J, Chivukula RR, O'Donnell KA,
Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P,
Torbenson M, Clark KR, et al: Therapeutic microRNA delivery
suppresses tumorigenesis in a murine liver cancer model. Cell.
137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng
GQ, Wan XX, He QY, Li JH, Qu JQ, et al: Activation of EGFR promotes
squamous carcinoma SCC10A cell migration and invasion via inducing
EMT-like phenotype change and MMP-9-mediated degradation of
E-cadherin. J Cell Biochem. 112:2508–2517. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jung H, Lee KP, Park SJ, Park JH, Jang YS,
Choi SY, Jung JG, Jo K, Park DY, Yoon JH, et al: TMPRSS4 promotes
invasion, migration and metastasis of human tumor cells by
facilitating an epithelial-mesenchymal transition. Oncogene.
27:2635–2647. 2008. View Article : Google Scholar
|
27
|
Christiansen JJ and Rajasekaran AK:
Reassessing epithelial to mesenchymal transition as a prerequisite
for carcinoma invasion and metastasis. Cancer Res. 66:8319–8326.
2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kurrey NK, Jalgaonkar SP, Joglekar AV,
Ghanate AD, Chaskar PD, Doiphode RY and Bapat SA: Snail and slug
mediate radioresistance and chemoresistance by antagonizing
p53-mediated apoptosis and acquiring a stem-like phenotype in
ovarian cancer cells. Stem Cells. 27:2059–2068. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Morel AP, Lièvre M, Thomas C, Hinkal G,
Ansieau S and Puisieux A: Generation of breast cancer stem cells
through epithelial-mesenchymal transition. PLoS One. 3:e28882008.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Santisteban M, Reiman JM, Asiedu MK,
Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC,
Manjili MH, et al: Immune-induced epithelial to mesenchymal
transition in vivo generates breast cancer stem cells. Cancer Res.
69:2887–2895. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Du L, Wang H, He L, Zhang J, Ni B, Wang X,
Jin H, Cahuzac N, Mehrpour M, Lu Y and Chen Q: CD44 is of
functional importance for colorectal cancer stem cells. Clin Cancer
Res. 14:6751–6760. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Diosdado B, van de Wiel MA, Terhaar Sive
Droste JS, Mongera S, Postma C, Meijerink WJ, Carvalho B and Meijer
GA: MiR-17-92 cluster is associated with 13q gain and c-myc
expression during colorectal adenoma to adenocarcinoma progression.
Br J Cancer. 101:707–714. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Monzo M, Navarro A, Bandres E, Artells R,
Moreno I, Gel B, Ibeas R, Moreno J, Martinez F, Diaz T, et al:
Overlapping expression of microRNAs in human embryonic colon and
colorectal cancer. Cell Res. 18:823–833. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lanza G, Ferracin M, Gafà R, Veronese A,
Spizzo R, Pichiorri F, Liu CG, Calin GA, Croce CM and Negrini M:
mRNA/microRNA gene expression profile in microsatellite unstable
colorectal cancer. Mol Cancer. 6:542007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schetter AJ, Leung SY, Sohn JJ, Zanetti
KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, et
al: MicroRNA expression profiles associated with prognosis and
therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436.
2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Motoyama K, Inoue H, Takatsuno Y, Tanaka
F, Mimori K, Uetake H, Sugihara K and Mori M: Over- and
under-expressed microRNAs in human colorectal cancer. Int J Oncol.
34:1069–1075. 2009.PubMed/NCBI
|
39
|
Jiang H, Wang P, Wang Q, Wang B, Mu J,
Zhuang X, Zhang L, Yan J, Miller D and Zhang HG: Quantitatively
controlling expression of miR-17-92 determines colon tumor
progression in a mouse tumor model. Am J Pathol. 184:1355–1368.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu
T, Zhu J, Huang SJ and Wan YL: Prognostic values of the miR-17-92
cluster and its paralogs in colon cancer. J Surg Oncol.
106:232–237. 2012. View Article : Google Scholar
|
41
|
Olsson M, Gustafsson O, Skogastierna C,
Tolf A, Rietz BD, Morfin R, Rane A and Ekström L: Regulation and
expression of human CYP7B1 in prostate: Overexpression of CYP7B1
during progression of prostatic adenocarcinoma. Prostate.
67:1439–1446. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tang W and Norlin M: Regulation of steroid
hydroxylase CYP7B1 by androgens and estrogens in prostate cancer
LNCaP cells. Biochem Biophys Res Commun. 344:540–546. 2006.
View Article : Google Scholar : PubMed/NCBI
|