1
|
Friedman SL: Mechanisms of hepatic
fibrogenesis. Gastroenterology. 134:1655–1669. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee UE and Friedman SL: Mechanisms of
hepatic fibrogenesis. Best Pract Res Clin Gastroenterol.
25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Trautwein C, Friedman SL, Schuppan D and
Pinzani M: Hepatic fibrosis: concept to treatment. J Hepatol.
62(Suppl 1): S15–S24. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gressner OA, Rizk MS, Kovalenko E,
Weiskirchen R and Gressner AM: Changing the pathogenetic roadmap of
liver fibrosis? Where did it start; where will it go? J
Gastroenterol Hepatol. 23:1024–1035. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bissell DM, Roulot D and George J:
Transforming growth factor beta and the liver. Hepatology.
34:859–867. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Inagaki Y and Okazaki I: Emerging insights
into transforming growth factor beta Smad signal in hepatic
fibrogenesis. Gut. 56:284–292. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Heldin CH, Miyazono K and ten Dijke P:
TGF-beta signalling from cell membrane to nucleus through SMAD
proteins. Nature. 390:465–471. 1997. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Friedman SL: Mechanisms of disease:
mechanisms of hepatic fibrosis and therapeutic implications. Nat
Clin Pract Gastroenterol Hepatol. 1:98–105. 2004. View Article : Google Scholar
|
9
|
Dooley S, Hamzavi J, Breitkopf K,
Wiercinska E, Said HM, Lorenzen J, Ten Dijke P and Gressner AM:
Smad7 prevents activation of hepatic stellate cells and liver
fibrosis in rats. Gastroenterology. 125:178–191. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang X, Odom DT, Koo SH, Conkright MD,
Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen
E, et al: Genome-wide analysis of cAMP-response element binding
protein occupancy, phosphorylation, and target gene activation in
human tissues. Proc Natl Acad Sci USA. 102:4459–4464. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Altarejos JY and Montminy M: CREB and the
CRTC co-activators: sensors for hormonal and metabolic signals. Nat
Rev Mol Cell Biol. 12:141–151. 2011. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Chan EC, Dusting GJ, Guo N, Peshavariya
HM, Taylor CJ, Dilley R, Narumiya S and Jiang F: Prostacyclin
receptor suppresses cardiac fibrosis: role of CREB phosphorylation.
J Mol Cell Cardiol. 49:176–185. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Baarsma HA, Engelbertink LH, van Hees LJ,
Menzen MH, Meurs H, Timens W, Postma DS, Kerstjens HA and Gosens R:
Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced
differentiation of pulmonary fibroblasts. Br J Pharmacol.
169:590–603. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Visavadiya NP, Li Y and Wang S: High
glucose upregulates upstream stimulatory factor 2 in human renal
proximal tubular cells through angiotensin II-dependent activation
of CREB. Nephron Exp Nephrol. 117:e62–e70. 2011. View Article : Google Scholar
|
15
|
Deng L, Li Y, Huang JM, Zhou G, Qian W and
Xu K: Effects of p-CREB-1 on transforming growth factor-β3
auto-regulation in hepatic stellate cells. J Cell Biochem.
112:1046–1054. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Doh KO, Jung HK, Moon IJ, Kang HG, Park JH
and Park JG: Prevention of CCl4-induced liver cirrhosis by ribbon
antisense to transforming growth factor-β1. Int J Mol Med.
21:33–39. 2008.
|
17
|
Wen AY, Sakamoto KM and Miller LS: The
role of the transcription factor CREB in immune function. J
Immunol. 185:6413–6419. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sakamoto KM and Frank DA: CREB in the
pathophysiology of cancer: implications for targeting transcription
factors for cancer therapy. Clin Cancer Res. 15:2583–2587. 2009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang Q, Dai X, Yang W, Wang H, Zhao H,
Yang F, Yang Y, Li J and Lv X: Caffeine protects against
alcohol-induced liver fibrosis by dampening the cAMP/PKA/CREB
pathway in rat hepatic stellate cells. Int Immunopharmacol.
25:340–352. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang S, Sun WY, Wu JJ and Wei W: TGF-β
signaling pathway as a pharmacological target in liver diseases.
Pharmacol Res. 85:15–22. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Purps O, Lahme B, Gressner AM,
Meindl-Beinker NM and Dooley S: Loss of TGF-beta dependent growth
control during HSC transdifferentiation. Biochem Biophys Res
Commun. 353:841–847. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chin J, Liu RY, Cleary LJ, Eskin A and
Byrne JH: TGF-beta1-induced long-term changes in neuronal
excitability in aplysia sensory neurons depend on MAPK. J
Neurophysiol. 95:3286–3290. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jang YS, Kim JH, Seo GY and Kim PH: TGF-β1
stimulates mouse macrophages to express APRIL through Smad and
p38MAPK/CREB pathways. Mol Cells. 32:251–255. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Y, Wang Y, Liu Y, Wang N, Qi Y and
Du J: Krüppel-like factor 4 transcriptionally regulates TGF-β1 and
contributes to cardiac myofibroblast differentiation. PLoS One.
8:e634242013. View Article : Google Scholar
|
25
|
Lin W, Tsai WL, Shao RX, Wu G, Peng LF,
Barlow LL, Chung WJ, Zhang L, Zhao H, Jang JY and Chung RT:
Hepatitis C virus regulates transforming growth factor beta1
production through the generation of reactive oxygen species in a
nuclear factor kappaB-dependent manner. Gastroenterology.
138:2509–2518. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Presser LD, McRae S and Waris G:
Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and
Sp1: role of TGF-β1 in hepatic stellate cell activation and
invasion. PLoS One. 8:e563672013. View Article : Google Scholar
|
27
|
Hosui A, Kimura A, Yamaji D, Zhu BM, Na R
and Hennighausen L: Loss of STAT5 causes liver fibrosis and cancer
development through increased TGF-beta and STAT3 activation. J Exp
Med. 206:819–831. 2009. View Article : Google Scholar : PubMed/NCBI
|