1
|
Järup L, Berglund M, Elinder CG, Nordberg
G and Vahter M: Health effects of cadmium exposure - a review of
the literature and a risk estimate. Scand J Work Environ Health.
24(Suppl 1): 1–51. 1998.
|
2
|
Thévenod F and Lee WK: Toxicology of
cadmium and its damage to mammalian organs. Met Ions Life Sci.
11:415–490. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Prozialeck WC and Edwards JR: Early
biomarkers of cadmium exposure and nephrotoxicity. Biometals.
23:793–809. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chakraborty PK, Lee WK, Molitor M, Wolff
NA and Thévenod F: Cadmium induces Wnt signaling to upregulate
proliferation and survival genes in sub-confluent kidney proximal
tubule cells. Mol Cancer. 9:1022010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Prozialeck WC, Edwards JR and Woods JM:
The vascular endothelium as a target of cadmium toxicity. Life Sci.
79:1493–1506. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dong F, Guo F, Li L, Guo L, Hou Y, Hao E,
Yan S, Allen TD and Liu J: Cadmium induces vascular permeability
via activation of the p38 MAPK pathway. Biochem Biophys Res Commun.
450:447–452. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu J and Kapron CM: Differential
induction of MAP kinase signalling pathways by cadmium in primary
cultures of mouse embryo limb bud cells. Reprod Toxicol.
29:286–291. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yuan Y, Jiang C, Hu F, Wang Q, Zhang K,
Wang Y, Gu J, Liu X, Bian J and Liu Z: The role of
mitogen-activated protein kinase in cadmium-induced primary rat
cerebral cortical neurons apoptosis via a mitochondrial apoptotic
pathway. J Trace Elem Med Biol. 29:275–283. 2015. View Article : Google Scholar
|
9
|
Green DR and Llambi F: Cell Death
Signaling. Cold Spring Harb Perspect Biol. 7:72015. View Article : Google Scholar
|
10
|
Wyllie AH, Kerr JF and Currie AR: Cell
death: The significance of apoptosis. Int Rev Cytol. 68:251–306.
1980. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kucharczak J, Simmons MJ, Fan Y and
Gélinas C: To be, or not to be: NF-kappaB is the answer - role of
Rel/NF-kappaB in the regulation of apoptosis. Oncogene.
22:8961–8982. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wajant H, Pfizenmaier K and Scheurich P:
Tumor necrosis factor signaling. Cell Death Differ. 10:45–65. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ashkenazi A and Salvesen G: Regulated cell
death: signaling and mechanisms. Annu Rev Cell Dev Biol.
30:337–356. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dutta J, Fan Y, Gupta N, Fan G and Gélinas
C: Current insights into the regulation of programmed cell death by
NF-kappaB. Oncogene. 25:6800–6816. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huxford T, Huang DB, Malek S and Ghosh G:
The crystal structure of the IkappaBalpha/NF-kappaB complex reveals
mechanisms of NF-kappaB inactivation. Cell. 95:759–770. 1998.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Karin M and Ben-Neriah Y: Phosphorylation
meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev
Immunol. 18:621–663. 2000. View Article : Google Scholar
|
17
|
Irmler M, Thome M, Hahne M, Schneider P,
Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C,
et al: Inhibition of death receptor signals by cellular FLIP.
Nature. 388:190–195. 1997. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Chu ZL, McKinsey TA, Liu L, Gentry JJ,
Malim MH and Ballard DW: Suppression of tumor necrosis
factor-induced cell death by inhibitor of apoptosis c-IAP2 is under
NF-kappaB control. Proc Natl Acad Sci USA. 94:10057–10062. 1997.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Tang G, Minemoto Y, Dibling B, Purcell NH,
Li Z, Karin M and Lin A: Inhibition of JNK activation through
NF-kappaB target genes. Nature. 414:313–317. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen YR and Tan TH: The c-Jun N-terminal
kinase pathway and apoptotic signaling (Review). Int J Oncol.
16:651–662. 2000.PubMed/NCBI
|
21
|
Davis RJ: Signal transduction by the JNK
group of MAP kinases. Cell. 103:239–252. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dhanasekaran DN and Johnson GL: MAPKs:
function, regulation, role in cancer and therapeutic targeting.
Oncogene. 26:3097–3099. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fan M and Chambers TC: Role of
mitogen-activated protein kinases in the response of tumor cells to
chemotherapy. Drug Resist Updat. 4:253–267. 2001. View Article : Google Scholar
|
24
|
Tournier C, Hess P, Yang DD, Xu J, Turner
TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA and Davis RJ:
Requirement of JNK for stress-induced activation of the cytochrome
c-mediated death pathway. Science. 288:870–874. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lei K and Davis RJ: JNK phosphorylation of
Bim-related members of the Bcl2 family induces Bax-dependent
apoptosis. Proc Natl Acad Sci USA. 100:2432–2437. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen LF and Greene WC: Shaping the nuclear
action of NF-kappaB. Nat Rev Mol Cell Biol. 5:392–401. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Jacobs MD and Harrison SC: Structure of an
IkappaBalpha/NF-kappaB complex. Cell. 95:749–758. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yokouchi M, Hiramatsu N, Hayakawa K,
Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J
and Kitamura M: Involvement of selective reactive oxygen species
upstream of proapoptotic branches of unfolded protein response. J
Biol Chem. 283:4252–4260. 2008. View Article : Google Scholar
|
29
|
Liu F, Wang B, Li L, Dong F, Chen X, Li Y,
Dong X, Wada Y, Kapron CM and Liu J: Low-dose cadmium upregulates
VEGF expression in lung adenocarcinoma cells. Int J Environ Res
Public Health. 12:10508–10521. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dong F, Zhou X, Li C, Yan S, Deng X, Cao
Z, Li L, Tang B, Allen TD and Liu J: Dihydroartemisinin targets
VEGFR2 via the NF-κB pathway in endothelial cells to inhibit
angiogenesis. Cancer Biol Ther. 15:1479–1488. 2014. View Article : Google Scholar
|
31
|
Javelaud D and Besançon F: NF-kappa B
activation results in rapid inactivation of JNK in TNF
alpha-treated Ewing sarcoma cells: a mechanism for the
anti-apoptotic effect of NF-kappa B. Oncogene. 20:4365–4372. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Du L, Dong F, Guo L, Hou Y, Yi F, Liu J
and Xu D: Interleukin-1β increases permeability and upregulates the
expression of vascular endothelial-cadherin in human renal
glomerular endothelial cells. Mol Med Rep. 11:3708–3714.
2015.PubMed/NCBI
|
33
|
Li L, Dong F, Xu D, Du L, Yan S, Hu H,
Lobe CG, Yi F, Kapron CM and Liu J: Short-term, low-dose cadmium
exposure induces hyperpermeability in human renal glomerular
endothelial cells. J Appl Toxicol. 36:257–265. 2016. View Article : Google Scholar
|
34
|
Morales AI, Vicente-Sánchez C, Jerkic M,
Santiago JM, Sánchez-González PD, Pérez-Barriocanal F and
López-Novoa JM: Effect of quercetin on metallothionein, nitric
oxide synthases and cyclooxygenase-2 expression on experimental
chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol.
210:128–135. 2006. View Article : Google Scholar
|
35
|
Bubici C, Papa S, Pham CG, Zazzeroni F and
Franzoso G: NF-kappaB and JNK: an intricate affair. Cell Cycle.
3:1524–1529. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Beg AA and Baltimore D: An essential role
for NF-kappaB in preventing TNF-alpha-induced cell death. Science.
274:782–784. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jeong EM, Moon CH, Kim CS, Lee SH, Baik
EJ, Moon CK and Jung YS: Cadmium stimulates the expression of
ICAM-1 via NF-kappaB activation in cerebrovascular endothelial
cells. Biochem Biophys Res Commun. 320:887–892. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen DJ, Xu YM, Du JY, Huang DY and Lau
AT: Cadmium induces cytotoxicity in human bronchial epithelial
cells through upregulation of eIF5A1 and NF-kappaB. Biochem Biophys
Res Commun. 445:95–99. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang TT, Wuerzberger-Davis SM, Wu ZH and
Miyamoto S: Sequential modification of NEMO/IKKgamma by SUMO-1 and
ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell.
115:565–576. 2003. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang CY, Mayo MW, Korneluk RG, Goeddel DV
and Baldwin AS Jr: NF-kappaB antiapoptosis: induction of TRAF1 and
TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.
Science. 281:1680–1683. 1998. View Article : Google Scholar : PubMed/NCBI
|
41
|
De Smaele E, Zazzeroni F, Papa S, Nguyen
DU, Jin R, Jones J, Cong R and Franzoso G: Induction of gadd45beta
by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature.
414:308–313. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zong WX, Edelstein LC, Chen C, Bash J and
Gélinas C: The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct
transcriptional target of NF-kappaB that blocks TNFalpha-induced
apoptosis. Genes Dev. 13:382–387. 1999. View Article : Google Scholar : PubMed/NCBI
|