Open Access

Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling

  • Authors:
    • Lixiang Zheng
    • Yujian Cai
    • Li Zhou
    • Ping Huang
    • Xiaoying Ren
    • Airen Zuo
    • Xianming Meng
    • Minjuan Xu
    • Xiangru Liao
  • View Affiliations

  • Published online on: November 22, 2016     https://doi.org/10.3892/ijmm.2016.2811
  • Pages: 39-46
  • Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Natural pigments are known for possessing a wide range of pharmacological and health-promoting properties. The pigments, produced by a new strain Fusarium (Fusarium sp. JN158) previously identified in our laboratory, were found to have 6 peaks (representing 6 compounds) by high-performance liquid chromatography with a diode-array detector (HPLC-DAD) separation. The 6th peak compound (compound VI) is a benzoquinone compound. In this study, we examined the effects of compound VI on the proliferation of breast cancer cells and aimed to elucidate the underlying mechamisms. Compound VI exerted anti-proliferative effects on MCF‑7 estrogen receptor (ER)+ cells in a dose-dependent manner (IC25, 7 µM; IC50, 11 µM), whereas it had no effect on MDA‑MB‑231 ER- cells and normal cells. The cell index (CI) began to decrease at 24 h following treatment with benzoquinone. Mechanistically, the results from molecular analysis revealed that compound VI inhibited the expression of ERα, progesterone receptor (PR), vascular endothelial growth factor (VEGF), Bcl-2, cyclin D1 and nuclear factor-κB (NF-κB) p65, while it increased the expression of cleaved caspase-3 and Bax in the MCF‑7 cells. Taken together, our findings indicate that compound VI exerts anti-proliferative effects on MCF‑7 cells through the NF-κB pathway via the regulation of ER signaling. Our data may indicate that benzoquinone from Fusarium pigment may have potential for use as an anti-proliferative agent in the treatment of breast cancer.
View Figures
View References

Related Articles

Journal Cover

January-2017
Volume 39 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zheng L, Cai Y, Zhou L, Huang P, Ren X, Zuo A, Meng X, Xu M and Liao X: Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling. Int J Mol Med 39: 39-46, 2017.
APA
Zheng, L., Cai, Y., Zhou, L., Huang, P., Ren, X., Zuo, A. ... Liao, X. (2017). Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling. International Journal of Molecular Medicine, 39, 39-46. https://doi.org/10.3892/ijmm.2016.2811
MLA
Zheng, L., Cai, Y., Zhou, L., Huang, P., Ren, X., Zuo, A., Meng, X., Xu, M., Liao, X."Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling". International Journal of Molecular Medicine 39.1 (2017): 39-46.
Chicago
Zheng, L., Cai, Y., Zhou, L., Huang, P., Ren, X., Zuo, A., Meng, X., Xu, M., Liao, X."Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling". International Journal of Molecular Medicine 39, no. 1 (2017): 39-46. https://doi.org/10.3892/ijmm.2016.2811