1
|
Kumar A: Editorial: Neuroinflammation and
cognition. Front Aging Neurosci. 10:4132018. View Article : Google Scholar
|
2
|
Russell JK, Jones CK and Newhouse PA: The
role of estrogen in brain and cognitive aging. Neurotherapeutics.
16:649–665. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen Z, Tang Y, Liu A, Jin X, Zhu J and Lu
X: Oral administration of Grifola Frondosa polysaccharides improves
memory impairment in aged rats via antioxidant action. Mol Nutr
Food Res. 61:17003132017. View Article : Google Scholar
|
4
|
Ryan J, Carriere I, Scali J, Ritchie K and
Ancelin ML: Life-time estrogen exposure and cognitive functioning
in later life. Psychoneuroendocrino. 34:287–298. 2009. View Article : Google Scholar
|
5
|
Lamar M, Resnick SM and Zonderman AB:
Longitudinal changes in verbal memory in older adults:
Distinguishing the effects of age from repeat testing. Neurology.
60:82–86. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hohman TJ, Beason-Held LL, Lamar M and
Resnick SM: Subjective cognitive complaints and longitudinal
changes in memory and brain function. Neuropsychology. 25:125–130.
2011. View
Article : Google Scholar :
|
7
|
Campisi J, Kapahi P, Lithgow GJ, Melov S,
Newman JC and Verdin E: From discoveries in ageing research to
therapeutics for healthy ageing. Nature. 571:183–192. 2019.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Garbers C, Kuck F, Aparicio-Siegmund S,
Konzak K, Kessenbrock M, Sommerfeld A, Häussinger D, Lang PA,
Brenner D, Mak TW, et al: Cellular senescence Or EGFR signaling
induces interleukin 6 (IL-6) receptor expression controlled by
mammalian target of rapamycin (mTOR). Cell Cycle. 12:3421–3432.
2013. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Franceschi C, Garagnani P, Parini P,
Giuliani C and Santoro A: Inflammaging: A new immune-metabolic
viewpoint for age-related diseases. Nat Rev Endocrinol. 14:576–590.
2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Renz H, Holt PG, Inouye M, Logan AC,
Prescott SL and Sly PD: An exposome perspective: Early-life events
and immune development in a changing world. J Allergy Clin Immunol.
140:24–40. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sly PD, Carpenter DO, Van den Berg M,
Stein RT, Landrigan PJ, Brune-Drisse MN and Suk W: Health
consequences of environmental exposures: Causal thinking in global
environmental epidemiology. Ann Glob Health. 82:3–9. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Floreani A, Leung PS and Gershwin ME:
Environmental basis of autoimmunity. Clin Rev Allergy Immunol.
50:287–300. 2016. View Article : Google Scholar
|
13
|
Ferrucci L and Fabbri E: Inflammageing:
Chronic inflammation in ageing, cardiovascular disease, and
frailty. Nat Rev Cardiol. 15:505–522. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liberale L, Montecucco F, Tardif JC, Libby
P and Camici GG: Inflamm-ageing: The role of inflammation in
age-dependent cardiovascular disease. Eur Heart J. 41:2974–2982.
2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Franceschi C and Campisi J: Chronic
inflammation (inflammaging) and its potential contribution to
age-associated diseases. J Gerontol A Biol Sci Med Sci. 69(Suppl
1): S4–S9. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang RP, Ho YS, Leung WK, Goto T and Chang
RC: Systemic inflammation linking chronic periodontitis to
cognitive decline. Brain Behav Immun. 81:63–73. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Baulch JE, Acharya MM, Allen BD, Ru N,
Chmielewski NN, Martirosian V, Giedzinski E, Syage A, Park AL,
Benke SN, et al: Cranial grafting of stem cell-derived
microvesicles improves cognition and reduces neuropathology in the
irradiated brain. Proc Natl Acad Sci USA. 113:4836–4841. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee JY, Joo B, Nam JH, Nam HY, Lee W, Nam
Y, Seo Y, Kang HJ, Cho HJ, Jang YP, et al: An aqueous extract of
herbal medicine ALWPs enhances cognitive performance and inhibits
LPS-induced neuroinflammation via FAK/NF-kappaB signaling pathways.
Front Aging Neurosci. 10:2692018. View Article : Google Scholar
|
19
|
Jacobs AH and Tavitian B: Noninvasive
molecular imaging of neuroinflammation. J Cereb Blood Flow Metab.
32:1393–1415. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chandrasekaran A, Idelchik M and Melendez
JA: Redox control of senescence and age-related disease. Redox
Biol. 11:91–102. 2017. View Article : Google Scholar
|
21
|
Zeng P, Li J, Chen Y and Zhang L: The
structures and biological functions of polysaccharides from
traditional chinese herbs. Prog Mol Biol Transl Sci. 163:423–444.
2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li S, Liu H, Wang W, Wang X, Zhang C,
Zhang J, Jing H, Ren Z, Gao Z, Song X and Jia L: Antioxidant and
anti-aging effects of acidic-extractable polysaccharides by
agaricus bisporus. Int J Biol Macromol. 106:1297–1306. 2018.
View Article : Google Scholar
|
23
|
Zhang R, Zhang X, Tang Y and Mao J:
Composition, isolation, purification and biological activities of
Sargassum Fusiforme Polysaccharides: A review. Carbohydr Polym.
228:1153812020. View Article : Google Scholar
|
24
|
Zhu Y, Yu X, Ge Q, Li J, Wang D, Wei Y and
Ouyang Z: Antioxidant and anti-aging activities of polysaccharides
from Cordyceps cicadae. Int J Biol Macromol. 157:394–400. 2020.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Li H, Li Z, Peng L, Jiang N, Liu Q, Zhang
E, Liang B, Li R and Zhu H: Lycium barbarum polysaccharide protects
human keratinocytes against UVB-induced photo-damage. Free Radic
Res. 51:200–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tian X, Liang T, Liu Y, Ding G, Zhang F
and Ma Z: Extraction, structural characterization, and biological
functions of Lycium Barbarum Polysaccharides: A Review.
Biomolecules. 9:3892019. View Article : Google Scholar :
|
27
|
Chang RC and So KF: Use of anti-aging
herbal medicine, Lycium barbarum, against aging-associated
diseases. What do we know so far? Cell Mol Neurobiol. 28:643–652.
2008. View Article : Google Scholar
|
28
|
Zhang Z, Zhou Y, Fan H, Billy KJ, Zhao Y,
Zhan X, Yang L and Jia Y: Effects of Lycium barbarum
polysaccharides on health and aging of C. Elegans depend On
Daf-12/Daf-16. Oxid Med Cell Longev. 2019:63794932019.
|
29
|
Blair JA, Bhatta S and Casadesus G: CNS
luteinizing hormone receptor activation rescues ovariectomy-related
loss of spatial memory and neuronal plasticity. Neurobiol Aging.
78:111–120. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bohm-Levine N, Goldberg AR, Mariani M,
Frankfurt M and Thornton J: Reducing luteinizing hormone levels
after ovariectomy improves spatial memory: Possible role of
brain-derived neurotrophic factor. Horm Behav. 118:1045902020.
View Article : Google Scholar
|
31
|
Monthakantirat O, Sukano W, Umehara K,
Noguchi H, Chulikhit Y and Matsumoto K: Effect of miroestrol on
ovariectomy-induced cognitive impairment and lipid peroxidation in
mouse brain. Phytomedicine. 21:1249–1255. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sbisa AM, Gogos A and van den Buuse M:
Spatial working memory in the touchscreen operant platform is
disrupted in female rats by ovariectomy but not estrous cycle.
Neurobiol Learn Mem. 144:147–154. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Robinson MD, McCarthy DJ and Smyth GK:
EdgeR: A bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar
|
34
|
Pertea M, Pertea GM, Antonescu CM, Chang
TC, Mendell JT and Salzberg SL: StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat
Biotechnol. 33:290–295. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
The Gene Ontology Resource: 20 years and
still GOing strong. Nucleic Acids Res. 47:D330–D338. 2019.
View Article : Google Scholar :
|
36
|
Kanehisa M, Furumichi M, Tanabe M, Sato Y
and Morishima K: KEGG: New perspectives on genomes, pathways,
diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017.
View Article : Google Scholar :
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
38
|
Shi Z, Zhu L, Li T, Tang X, Xiang Y, Han
X, Xia L, Zeng L, Nie J, Huang Y, et al: Neuroprotective mechanisms
of Lycium barbarum polysaccharides against ischemic insults by
regulating NR2B and NR2A containing NMDA receptor signaling
pathways. Front Cell Neurosci. 11:2882017. View Article : Google Scholar :
|
39
|
Fjell AM, McEvoy L, Holland D, Dale AM and
Walhovd KB: What is normal in normal aging? Effects of aging,
amyloid and Alzheimer's disease on the cerebral cortex and the
hippocampus. Prog Neurobiol. 117:20–40. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Stanojlovic M, Pallais JP, Lee MK and Kotz
CM: Pharmacological and chemogenetic orexin/hypocretin intervention
ameliorates hipp-dependent memory impairment in the A53T mice model
of Parkinson's disease. Mol Brain. 12:872019. View Article : Google Scholar : PubMed/NCBI
|
41
|
No authors listed. 2020 Alzheimer's
disease facts and figures. Alzheimers Dement. Mar 10–2020.Epub
ahead of print.
|
42
|
Boyle PA, Yu L, Wilson RS, Leurgans SE,
Schneider JA and Bennett DA: Person-specific contribution of
neuropathologies to cognitive loss in old age. Ann Neurol.
83:74–83. 2018. View Article : Google Scholar :
|
43
|
Nascimento C, Di Lorenzo Alho AT, Bazan
Conceição Amaral C, Leite REP, Nitrini R, Jacob-Filho W,
Pasqualucci CA, Hokkanen SRK, Hunter S, Keage H, et al: Prevalence
of transactive response DNA-binding Protein 43 (TDP-43)
proteinopathy in cognitively normal older adults: systematic review
and meta-analysis. Neuropathol Appl Neurobiol. 44:286–297. 2018.
View Article : Google Scholar
|
44
|
Morgan KN, Derby CA and Gleason CE:
Cognitive changes with reproductive aging, perimenopause, and
menopause. Obstet Gynecol Clin North Am. 45:751–763. 2018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Bettio L, Rajendran L and Gil-Mohapel J:
The effects of aging in the hippocampus and cognitive decline.
Neurosci Biobehav Rev. 79:66–86. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Rehman SU, Shah SA, Ali T, Chung JI and
Kim MO: Anthocyanins reversed D-galactose-induced oxidative stress
and neuroinflammation mediated cognitive impairment in adult rats.
Mol Neurobiol. 54:255–271. 2017. View Article : Google Scholar
|
47
|
Huang C, Irwin MG, Wong G and Chang R:
Evidence of the impact of systemic inflammation on
neuroinflammation from a non-bacterial endotoxin animal model. J
Neuroinflammation. 15:1472018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Liang J, Wu Y, Yuan H, Yang Y, Xiong Q,
Liang C, Li Z, Li C, Zhang G, Lai X, et al: Dendrobium officinale
polysaccharides attenuate learning and memory disabilities via
anti-oxidant and anti-inflammatory actions. Int J Biol Macromol.
126:414–426. 2019. View Article : Google Scholar
|
49
|
Zhang X, Bai L, Zhang S, Zhou X, Li Y and
Bai J: Trx-1 ameliorates learning and memory deficits in
MPTP-induced Parkinson's disease model in mice. Free Radic Biol
Med. 124:380–387. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Arroyo-García LE, Tendilla-Beltrán H,
Vázquez-Roque RA, Jurado-Tapia EE, Díaz A, Aguilar-Alonso P,
Brambila E, Monjaraz E, De La Cruz F, Rodríguez-Moreno A and Flores
G: Amphetamine sensitization alters hippocampal neuronal morphology
and memory and learning behaviors. Mol Psychiatry. Jun 17–2020.Epub
ahead of print. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ramani M, Kumar R, Halloran B, Lal CV,
Ambalavanan N and McMahon LL: Supraphysiological levels of oxygen
exposure during the neonatal period impairs signaling pathways
required for learning and memory. Sci Rep. 8:99142018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lu J, Xu Y, Hu W, Gao Y, Ni X, Sheng H and
Liu Y: Exercise ameliorates depression-like behavior and increases
hippocampal BDNF level in ovariectomized rats. Neurosci Lett.
573:13–18. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kouhestani S, Jafari A and Babaei P:
Kaempferol attenuates cognitive deficit via regulating oxidative
stress and neuroinflammation in an ovariectomized rat model of
sporadic dementia. Neural Regen Res. 13:1827–1832. 2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Saied NM, Georgy GS, Hussien RM and Hassan
WA: Neuromodulatory effect of curcumin on catecholamine systems and
inflammatory cytokines in ovariectomized female rats. Clin Exp
Pharmacol Physiol. 48:337–346. 2021. View Article : Google Scholar
|
55
|
Lu SM, Gui B, Dong HQ, Zhang X, Zhang SS,
Hu LQ, Liu HL, Sun J and Qian YN: Prophylactic lithium alleviates
splenectomy-induced cognitive dysfunction Possibly by inhibiting
hippocampal TLR4 activation in aged rats. Brain Res Bull.
114:31–41. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhong Q, Zou Y, Liu H, Chen T, Zheng F,
Huang Y, Chen C and Zhang Z: Toll-like receptor 4 deficiency
ameliorates β2-microglobulin induced age-related cognition decline
due to neuroinflammation in mice. Mol Brain. 13:202020. View Article : Google Scholar
|
57
|
Wang S, Zhang X, Zhai L, Sheng X, Zheng W,
Chu H and Zhang G: Atorvastatin attenuates cognitive deficits and
neuroinflammation induced by Aβ1-42 involving modulation
of TLR4/TRAF6/NF-κB pathway. J Mol Neurosci. 64:363–373. 2018.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W and
Xia R: Neural stem cell transplantation decreases neuroinflammation
in a transgenic mouse model of Alzheimer's disease. J Neurochem.
136:815–825. 2016. View Article : Google Scholar
|
59
|
He P, Yan S, Zheng J, Gao Y, Zhang S, Liu
Z, Liu X and Xiao C: Eriodictyol attenuates LPS-induced
neuroinflammation, amyloidogenesis, and cognitive impairments via
the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial
cells. J Agric Food Chem. 66:10205–10214. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Xu Y, Sheng H, Bao Q, Wang Y, Lu J and Ni
X: NLRP3 inflammasome activation mediates estrogen
deficiency-induced depression- and anxiety-like behavior and
hippocampal inflammation in mice. Brain Behav Immun. 56:175–186.
2016. View Article : Google Scholar : PubMed/NCBI
|
61
|
Peng Q, Liu H, Shi S and Li M: Lycium
ruthenicum polysaccharide attenuates inflammation through
inhibiting TLR4/NF-κB signaling pathway. Int J Biol Macromol.
67:330–335. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Gan F, Liu Q, Liu Y, Huang D, Pan C, Song
S and Huang K: Lycium barbarum polysaccharides improve CCl4-induced
liver fibrosis, inflammatory response and TLRs/NF-kB signaling
pathway expression in wistar rats. Life Sci. 192:205–212. 2018.
View Article : Google Scholar
|