1
|
Jiang Y and Tuan RS: Origin and function
of cartilage stem/progenitor cells in osteoarthritis. Nat Rev
Rheumatol. 11:206–212. 2015. View Article : Google Scholar
|
2
|
Vila PM, Jeanpierre LM, Rizzi CJ, Yaeger
LH and Chi JJ: Comparison of autologous vs Homologous costal
cartilage grafts in dorsal augmentation rhinoplasty: A systematic
review and Meta-analysis. JAMA Otolaryngol Head Neck Surg.
146:347–354. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang L, Wang JW, Ding J, Zhang X, Wang
XM, Zhang ZZ and Yu RZ: A new technique for Asian nasal tip
shaping: 'Twin tower' folding ear cartilage transplantation. Case
Reports Plast Surg Hand Surg. 9:207–213. 2022. View Article : Google Scholar :
|
4
|
Eftekhar N, Borjian A, Rafieian S, Borjian
MA and Sahebi MA: Successful tracheal necrosis management using a
pedicle pectoralis flap: A case report. Turk Gogus Kalp Damar
Cerrahisi Derg. 28:547–551. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Calvert JW, Patel AC and Daniel RK:
Reconstructive rhinoplasty: Operative revision of patients with
previous autologous costal cartilage grafts. Plast Reconstr Surg.
133:1087–1096. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang S, Yang L, Cai B, Liu F, Hou Y, Zheng
H, Cheng F, Zhang H, Wang L, Wang X, et al: Injectable hybrid
inorganic nanoscaffold as rapid stem cell assembly template for
cartilage repair. Natl Sci Rev. 9:nwac0372022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Johnson K, Zhu S, Tremblay MS, Payette JN,
Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X and Schultz
PG: A stem cell-based approach to cartilage repair. Science.
336:717–721. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Watanabe J, Yamada M, Niibe K, Zhang M,
Kondo T, Ishibashi M and Egusa H: Preconditioning of bone
marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine
enhances bone regeneration via reinforced resistance to oxidative
stress. Biomaterials. 185:25–38. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hughes CE, Coody TK, Jeong MY, Berg JA,
Winge DR and Hughes AL: Cysteine Toxicity Drives Age-Related
Mitochondrial Decline by Altering Iron Homeostasis. Cell.
180:296–310.e18. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
He K, Nie L, Ali T, Liu Z, Li W, Gao R,
Zhang Z, Liu J, Dai Z, Xie Y, et al: Adiponectin deficiency
accelerates brain aging via mitochondria-associated
neuroinflammation. Immun Ageing. 20:152023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Akter M, Ma H, Hasan M, Karim A, Zhu X,
Zhang L and Li Y: Exogenous L-lactate administration in rat
hippocampus increases expression of key regulators of mitochondrial
biogenesis and antioxidant defense. Front Mol Neurosci Mar.
16:11171462023. View Article : Google Scholar
|
12
|
Qu F, Wang P, Zhang K, Shi Y, Li Y, Li C,
Lu J, Liu Q and Wang X: Manipulation of Mitophagy by 'All-in-One'
nanosensitizer augments sonodynamic glioma therapy. Autophagy.
16:1413–1435. 2020. View Article : Google Scholar
|
13
|
Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z,
He L, Tan J, Liu Y, Liu H, et al: PINK1-PRKN/PARK2 pathway of
mitophagy is activated to protect against renal
ischemia-reperfusion injury. Autophagy. 14:880–897. 2018.
View Article : Google Scholar :
|
14
|
Kubli DA and Gustafsson ÅB: Mitochondria
and mitophagy: The yin and yang of cell death control. Circ Res.
111:1208–1221. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu L, Zhang W, Liu T, Tan Y, Chen C, Zhao
J, Geng H and Ma C: The physiological metabolite α-ketoglutarate
ameliorates osteoarthritis by regulating mitophagy and oxidative
stress. Redox Biol. 62:1026632023. View Article : Google Scholar
|
16
|
Hu S, Zhang C, Ni L, Huang C, Chen D, Shi
K, Jin H, Zhang K, Li Y, Xie L, et al: Stabilization of HIF-1α
alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis.
11:4812020. View Article : Google Scholar
|
17
|
Wang FS, Kuo CW, Ko JY, Chen YS, Wang SY,
Ke HJ, Kuo PC, Lee CH, Wu JC, Lu WB, et al: Irisin mitigates
oxidative stress, chondrocyte dysfunction and osteoarthritis
development through regulating mitochondrial integrity and
autophagy. Antioxidants (Basel). 9:8102020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Taheem DK, Jell G and Gentleman E: Hypoxia
inducible factor-1α in osteochondral tissue engineering. Tissue Eng
Part B Rev. 26:105–115. 2020. View Article : Google Scholar :
|
19
|
Li M, Ning J, Wang J, Yan Q, Zhao K and
Jia X: SETD7 regulates chondrocyte differentiation and glycolysis
via the Hippo signaling pathway and HIF-1α. Int J Mol Med.
48:2102021. View Article : Google Scholar
|
20
|
Xiaoshi J, Maoquan L, Jiwei W, Jinqiu N
and Ke Z: SETD7 mediates the vascular invasion in articular
cartilage and chondrocytes apoptosis in osteoarthriis. FASEB J.
35:e212832021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang H, Wang L, Cui J, Wang S, Han Y,
Shao H, Wang C, Hu Y, Li X, Zhou Q, et al: Maintaining hypoxia
environment of subchondral bone alleviates osteoarthritis
progression. Sci Adv. 9:eabo78682023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lampert MA, Orogo AM, Najor RH, Hammerling
BC, Leon LJ, Wang BJ, Kim T, Sussman MA and Gustafsson ÅB:
BNIP3L/NIX and FUNDC1-mediated mitophagy is required for
mitochondrial network remodeling during cardiac progenitor cell
differentiation. Autophagy. 15:1182–1198. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Deng Z, Ou H, Ren F, Guan Y, Huan Y, Cai H
and Sun B: LncRNA SNHG14 promotes OGD/R-induced neuron injury by
inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22
mouse hippocampal neuronal cells. Biol Res. 53:382020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ashammakhi N, Darabi MA, Kehr NS, Erdem A,
Hu SK, Dokmeci MR, Nasr AS and Khademhosseini A: Advances in
controlled oxygen generating biomaterials for tissue engineering
and regenerative therapy. Biomacromolecules. 21:56–72. 2020.
View Article : Google Scholar
|
25
|
Montesdeoca CYC, Stocco TD, Marciano FR,
Webster TJ and Lobo AO: 3D bioprinting of smart oxygen-releasing
cartilage scaffolds. J Funct Biomater. 13:2522022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Majmundar AJ, Wong WJ and Simon MC:
Hypoxia-inducible factors and the response to hypoxic stress. Mol
Cell. 40:294–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Geng B, Wang X, Park KH, Lee KE, Kim J,
Chen P, Zhou X, Tan T, Yang C, Zou X, et al: UCHL1 protects against
ischemic heart injury via activating HIF-1α signal pathway. Redox
Biol. 52:1022952022. View Article : Google Scholar
|
28
|
Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu
A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, et
al: UCHL1 provides diagnostic and antimetastatic strategies due to
its deubiquitinating effect on HIF-1α. Nat Commun. 6:61532015.
View Article : Google Scholar
|
29
|
Truong VA, Lin YH, Nguyen NTK, Hsu MN,
Pham NN, Chang YH, Chang CW, Shen CC, Lee HS, Lai PL, et al:
Bi-directional gene activation and repression promote ASC
differentiation and enhance bone healing in osteoporotic rats. Mol
Ther. 30:92–104. 2022. View Article : Google Scholar :
|
30
|
Hsu MN, Yu FJ, Chang YH, Huang KL, Pham
NN, Truong VA, Lin MW, Kieu Nguyen NT, Hwang SM and Hu YC: CRISPR
interference-mediated noggin knockdown promotes BMP2-induced
osteogenesis and calvarial bone healing. Biomaterials.
252:1200942020. View Article : Google Scholar
|
31
|
Nguyen NTK, Chang YH, Truong VA, Hsu MN,
Pham NN, Chang CW, Wu YH, Chang YH, Li H and Hu YC: CRISPR
activation of long non-coding RNA DANCR promotes bone regeneration.
Biomaterials. 275:1209652021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
33
|
Moon KC, Suh HS, Kim KB, Han SK, Young KW,
Lee JW and Kim MH: Potential of allogeneic adipose-derived stem
cell-hydrogel complex for treating diabetic foot ulcers. Diabetes.
68:837–846. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wiggers TG, Winters M, Van den Boom NA,
Haisma HJ and Moen MH: Autologous stem cell therapy in knee
osteoarthritis: A systematic review of randomised controlled
trials. Br J Sports Med. 55:1161–1169. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Seki A, Sakai Y, Komura T, Nasti A,
Yoshida K, Higashimoto M, Honda M, Usui S, Takamura M, Takamura T,
et al: Adipose tissue-derived stem cells as a regenerative therapy
for a mouse steatohepatitis-induced cirrhosis model. Hepatology.
58:1133–1142. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan
G, Yang H, Bai J, Cui W and Geng D: An update on adipose-derived
stem cells for regenerative medicine: Where challenge meets
opportunity. Adv Sci (Weinh). 10:e22073342013. View Article : Google Scholar
|
37
|
He G, Nie JJ, Liu X, Ding Z, Luo P, Liu Y,
Zhang BW, Wang R, Liu X, Hai Y and Chen DF: Zinc oxide
nanoparticles inhibit osteosarcoma metastasis by downregulating
β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact
Mater. 19:690–702. 2022. View Article : Google Scholar :
|
38
|
Onishi M, Yamano K, Sato M, Matsuda N and
Okamoto K: Molecular mechanisms and physiological functions of
mitophagy. EMBO J. 40:e1047052021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Stegen S, Laperre K, Eelen G, Rinaldi G,
Fraisl P, Torrekens S, Van Looveren R, Loopmans S, Bultynck G,
Vinckier S, et al: HIF-1α metabolically controls collagen synthesis
and modification in chondrocytes. Nature. 565:511–515. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sonoda K, Bogahawatta S, Katayama A, Ujike
S, Kuroki S, Kitagawa N, Hirotsuru K, Suzuki N, Miyata T, Kawaguchi
SI and Tsujita T: Prolyl Hydroxylase domain protein inhibitor not
harboring a 2-Oxoglutarate scaffold protects against hypoxic
stress. ACS Pharmacol Transl Sci. 5:362–372. 2022. View Article : Google Scholar
|
41
|
Usui-Ouchi A, Aguilar E, Murinello S,
Prins M, Gantner ML, Wright PE, Berlow RB and Friedlander M: An
allosteric peptide inhibitor of HIF-1α regulates hypoxia-induced
retinal neovascularization. Proc Natl Acad Sci USA.
117:28297–28306. 2020. View Article : Google Scholar
|
42
|
Elvidge GP, Glenny L, Appelhoff RJ,
Ratcliffe PJ, Ragoussis J and Gleadle JM: Concordant regulation of
gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase
inhibition: The role of HIF-1alpha, HIF-2alpha, and other pathways.
J Biol Chem. 281:15215–15226. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nguyen LK, Cavadas MA, Scholz CC,
Fitzpatrick SF, Bruning U, Cummins EP, Tambuwala MM, Manresa MC,
Kholodenko BN, Taylor CT and Cheong A: A dynamic model of the
hypoxia-inducible factor 1α (HIF-1α) network. J Cell Sci.
126:1454–1463. 2013.PubMed/NCBI
|
44
|
Rafique M, Wei T, Sun Q, Midgley AC, Huang
Z, Wang T, Shafiq M, Zhi D, Si J, Yan H, et al: The effect of
hypoxia-mimicking responses on improving the regeneration of
artificial vascular grafts. Biomaterials. 271:1207462021.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang X, Chen JY, Pei X, Li YH, Feng H, He
ZH, Xie WJ, Pei XB, Zhu Z, Wan QB and Wang J: One-Pot facile
encapsulation of dimethyloxallyl glycine by nanoscale zeolitic
imidazolate frameworks-8 for enhancing vascularized bone
regeneration. Adv Healthc Mater. 12:e22023172023. View Article : Google Scholar
|
46
|
Myllyharju J: Prolyl 4-hydroxylases, the
key enzymes of collagen biosynthesis. Matrix Biol. 22:15–24. 2003.
View Article : Google Scholar
|
47
|
Jackson P and Thompson RJ: The
demonstration of new human brain-specific proteins by
high-resolution two-dimensional polyacrylamide gel electrophoresis.
J Neurol Sci. 49:429–438. 1981. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hu Y, Qi C, Shi J, Tan W, Adiljan
Abdurusul, Zhao Z, Xu Y, Wu H and Zhang Z: Podocyte-specific
deletion of ubiquitin carboxyl-terminal hydrolase L1 causes
podocyte injury by inducing endoplasmic reticulum stress. Cell Mol
Life Sci. 80:1062023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhu Z, He Z, Tang T, Wang F, Chen H, Li B,
Chen G, Wang J, Tian W, Chen D, et al: Integrative bioinformatics
analysis revealed mitochondrial dysfunction-related genes
underlying intervertebral disc degeneration. Oxid Med Cell Longev.
2022:13724832022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lin L, Li S, Hu S, Yu W, Jiang B, Mao C,
Li G, Yang R, Miao X, Jin M, et al: UCHL1 impairs periodontal
ligament stem cell osteogenesis in periodontitis. J Dent Res.
102:61–71. 2023. View Article : Google Scholar
|
51
|
Cerqueira FM, von Stockum S, Giacomello M,
Goliand I, Kakimoto P, Marchesan E, De Stefani D, Kowaltowski AJ,
Ziviani E and Shirihai OS: A new target for an old DUB: UCH-L1
regulates mitofusin-2 levels, altering mitochondrial morphology,
function and calcium uptake. Redox Biol. 37:1016762020. View Article : Google Scholar :
|
52
|
Gao H, Antony R, Srinivasan R, Wu P, Wang
X and Li Y: UCHL1 regulates oxidative activity in skeletal muscle.
PLoS One. 15:e02417162020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bouron A, Aubry L, Loreth D, Fauvarque MO
and Meyer-Schwesinger C: Role of the deubiquitinating enzyme UCH-L1
in mitochondrial function. Front Cell Neurosci. 17:11499542023.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Komor AC, Badran AH and Liu DR:
CRISPR-Based technologies for the manipulation of eukaryotic
genomes. Cell. 168:20–36. 2017. View Article : Google Scholar :
|
55
|
Li C and Samulski RJ: Engineering
adeno-associated virus vectors for gene therapy. Nat Rev Genet.
21:255–272. 2020. View Article : Google Scholar : PubMed/NCBI
|