1
|
Smeland S, Bielack SS, Whelan J, Bernstein
M, Hogendoorn P, Krailo MD, Gorlick R, Janeway KA, Ingleby FC,
Anninga J, et al: Survival and prognosis with osteosarcoma:
Outcomes in more than 2000 patients in the EURAMOS-1 (European and
American Osteosarcoma Study) cohort. Eur J Cancer. 109:36–50. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Harrison DJ, Geller DS, Gill JD, Lewis VO
and Gorlick R: Current and future therapeutic approaches for
osteosarcoma. Expert Rev Anticancer Ther. 18:39–50. 2018.
View Article : Google Scholar
|
3
|
Heymann MF, Brown HK and Heymann D: Drugs
in early clinical development for the treatment of osteosarcoma.
Expert Opin Investig Drugs. 25:1265–1280. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Anderson ME: Update on survival in
osteosarcoma. Orthop Clin North Am. 47:283–292. 2016. View Article : Google Scholar
|
5
|
Xu Y, Qi J, Sun W, Zhong W and Wu H:
Therapeutic effects of zoledronic Acid-loaded hyaluronic
Acid/Polyethylene Glycol/Nano-Hydroxyapatite nanoparticles on
osteosarcoma. Front Bioeng Biotechnol. 10:8976412022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao X, Wu Q, Gong X, Liu J and Ma Y:
Osteosarcoma: A review of current and future therapeutic
approaches. Biomed Eng Online. 20:242021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu J, Yao Q, Peng Y, Dong Z, Tang L, Su
X, Liu L, Chen C, Ramalingam M and Cheng L: Identification of
Small-molecule inhibitors for osteosarcoma targeted therapy:
Synchronizing in silico, in vitro, and in vivo analyses. Front
Bioeng Biotechnol. 10:9211072022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Meng D, Frank AR and Jewell JL: mTOR
signaling in stem and progenitor cells. Development.
145:dev1525952018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Costa RLB, Han HS and Gradishar WJ:
Targeting the PI3K/AKT/mTOR pathway in triple-negative breast
cancer: A review. Breast Cancer Res Treat. 169:397–406. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou Q, Deng Z, Zhu Y, Long H, Zhang S and
Zhao J: mTOR/p70S6K signal transduction pathway contributes to
osteosarcoma progression and patients' prognosis. Med Oncol.
27:1239–1245. 2010. View Article : Google Scholar
|
11
|
Miwa S, Sugimoto N, Yamamoto N, Shirai T,
Nishida H, Hayashi K, Kimura H, Takeuchi A, Igarashi K, Yachie A,
et al: Caffeine induces apoptosis of osteosarcoma cells by
inhibiting AKT/mTOR/S6K, NF-κB and MAPK pathways. Anticancer Res.
32:3643–3649. 2012.PubMed/NCBI
|
12
|
Zhuo BB, Zhu LQ, Yao C, Wang XH, Li SX,
Wang R, Li Y and Ling ZY: ADCK1 is a potential therapeutic target
of osteosarcoma. Cell Death Dis. 13:9542022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Heffron TP, Berry M, Castanedo G, Chang C,
Chuckowree I, Dotson J, Folkes A, Gunzner J, Lesnick JD, Lewis C,
et al: Identification of GNE-477, a potent and efficacious dual
PI3K/mTOR inhibitor. Bioorg Med Chem Lett. 20:2408–2411. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Ye X, Ruan JW, Huang H, Huang WP, Zhang Y
and Zhang F: PI3K-Akt-mTOR inhibition by GNE-477 inhibits renal
cell carcinoma cell growth in vitro and in vivo. Aging (Albany NY).
12:9489–9499. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang Y, Shen H, Sun Q, Zhao L, Liu H, Ye
L, Xu Y, Cai J, Li Y, Gao L, et al: The new PI3K/mTOR inhibitor
GNE-477 inhibits the malignant behavior of human glioblastoma
cells. Front Pharmacol. 12:6595112021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Barber NA and Ganti AK: Pulmonary
toxicities from targeted therapies: A review. Target Oncol.
6:235–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ulbrich K, Hola K, Subr V, Bakandritsos A,
Tucek J and Zboril R: Targeted drug delivery with polymers and
magnetic nanoparticles: Covalent and noncovalent approaches,
release control, and clinical studies. Chem Rev. 116:5338–5431.
2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
MacEwan SR, Callahan DJ and Chilkoti A:
Stimulus-responsive macromolecules and nanoparticles for cancer
drug delivery. Nanomedicine (Lond). 5:793–806. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fang H, Feng Q, Shi Y, Zhou J, Wang Q and
Zhong L: Hepatic insulin resistance induced by mitochondrial
oxidative stress can be ameliorated by sphingosine 1-phosphate. Mol
Cell Endocrinol. 501:1106602020. View Article : Google Scholar
|
20
|
Do MH, Phan NH, Nguyen TD, Pham TT, Nguyen
VK, Vu TT and Nguyen TK: Activated carbon/Fe(3)O(4) nanoparticle
composite: Fabrication, methyl orange removal and regeneration by
hydrogen peroxide. Chemosphere. 85:1269–1276. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X,
Tseng M, Samykutty A, Zhang L, Yan J, Miller D, et al:
Broccoli-Derived nanoparticle inhibits mouse colitis by activating
dendritic cell AMP-Activated protein kinase. Mol Ther.
25:1641–1654. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dashamiri S, Ghaedi M, Asfaram A, Zare F
and Wang S: Multi-response optimization of ultrasound assisted
competitive adsorption of dyes onto Cu (OH)2-nanoparticle loaded
activated carbon: Central composite design. Ultrason Sonochem.
34:343–353. 2017. View Article : Google Scholar
|
23
|
Hou X, Lin H, Zhou X, Cheng Z, Li Y, Liu
X, Zhao F, Zhu Y, Zhang P and Chen D: Novel dual ROS-sensitive and
CD44 receptor targeting nanomicelles based on oligomeric hyaluronic
acid for the efficient therapy of atherosclerosis. Carbohydr Polym.
232:1157872020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li S, Luo L, He Y, Li R, Xiang Y, Xing Z,
Li Y, Albashari AA, Liao X, Zhang K, et al: Dental pulp stem
cell-derived exosomes alleviate cerebral ischaemia-reperfusion
injury through suppressing inflammatory response. Cell Prolif.
54:e130932021. View Article : Google Scholar : PubMed/NCBI
|
25
|
He F and Zuo L: Redox roles of reactive
oxygen species in cardiovascular diseases. Int J Mol Sci.
16:27770–27780. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kwon JH, Lee NG, Kang AR, Ahn IH, Choi IY,
Song JY, Hwang SG, Um HD, Choi JR, Kim J, et al: JNC-1043, a novel
podophyllotoxin derivative, exerts anticancer drug and
radiosensitizer effects in colorectal cancer cells. Molecules.
27:2022. View Article : Google Scholar
|
27
|
Behera SS, Pramanik K and Nayak MK: Recent
advancement in the treatment of cardiovascular diseases:
Conventional therapy to nanotechnology. Curr Pharm Des.
21:4479–4497. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yoshida K, Ono T, Dairaku T, Kashiwagi Y
and Sato K: Preparation of hydrogen peroxide sensitive nanofilms by
a Layer-by-Layer technique. Nanomaterials (Basel). 8:9412018.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kumari P, Rompicharla SVK, Muddineti OS,
Ghosh B and Biswas S: Transferrin-anchored poly(lactide) based
micelles to improve anticancer activity of curcumin in hepatic and
cervical cancer cell monolayers and 3D spheroids. Int J Biol
Macromol. 116:1196–1213. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kiran Rompicharla SV, Trivedi P, Kumari P,
Ghanta P, Ghosh B and Biswas S: Polymeric micelles of
suberoylanilide hydroxamic acid to enhance the anticancer potential
in vitro and in vivo. Nanomedicine (Lond). 12:43–58. 2017.
View Article : Google Scholar
|
31
|
Son GM, Kim HY, Ryu JH, Chu CW, Kang DH,
Park SB and Jeong YI: Self-assembled polymeric micelles based on
hyaluronic acid-g-poly(D,L-lactide-co-glycolide) copolymer for
tumor targeting. Int J Mol Sci. 15:16057–16068. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Luo L, He Y, Jin L, Zhang Y, Guastaldi FP,
Albashari AA, Hu F, Wang X, Wang L, Xiao J, et al: Application of
bioactive hydrogels combined with dental pulp stem cells for the
repair of large gap peripheral nerve injuries. Bioact Mater.
6:638–654. 2021.
|
33
|
Oerlemans C, Bult W, Bos M, Storm G,
Nijsen JF and Hennink WE: Polymeric micelles in anticancer therapy:
Targeting, imaging and triggered release. Pharm Res. 27:2569–2589.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nam SH, Lee SW, Lee YJ and Kim YM: Safety
and tolerability of weekly Genexol-PM, a Cremophor-Free polymeric
micelle formulation of paclitaxel, with carboplatin in gynecologic
cancer: A phase I study. Cancer Res Treat. 55:1346–1354. 2023.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu Y, Liu Y, Zang J, Abdullah AAI, Li Y
and Dong H: Design strategies and applications of ROS-Responsive
phenylborate Ester-based nanomedicine. ACS Biomater Sci Eng.
6:6510–6527. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yoshida K, Awaji K, Shimizu S, Iwasaki M,
Oide Y, Ito M, Dairaku T, Ono T, Kashiwagi Y and Sato K:
Preparation of microparticles capable of glucose-induced insulin
release under physiological conditions. Polymers (Basel).
10:11642018. View Article : Google Scholar
|
37
|
Council NR, Earth Do, Studies L, Research
IfLA, Care CftUotGft and Animals UoL: Guide for the care and use of
laboratory animals. 2010.
|
38
|
Ovsianikov A, Deiwick A, Van Vlierberghe
S, Dubruel P, Moller L, Drager G and Chichkov B: Laser fabrication
of three-dimensional CAD scaffolds from photosensitive gelatin for
applications in tissue engineering. Biomacromolecules. 12:851–858.
2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Oommen OP, Duehrkop C, Nilsson B, Hilborn
J and Varghese OP: Multifunctional hyaluronic acid and chondroitin
sulfate nanoparticles: Impact of glycosaminoglycan presentation on
receptor mediated cellular uptake and immune activation. ACS Appl
Mater Interfaces. 8:20614–20624. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Neves AR, Queiroz JF, Costa Lima SA,
Figueiredo F, Fernandes R and Reis S: Cellular uptake and
transcytosis of lipid-based nanoparticles across the intestinal
barrier: Relevance for oral drug delivery. J Colloid Interface Sci.
463:258–265. 2016. View Article : Google Scholar
|
41
|
Zamani E, Johnson TJ, Chatterjee S,
Immethun C, Sarella A, Saha R and Dishari SK: Cationic π-Conjugated
polyelectrolyte shows antimicrobial activity by causing lipid loss
and lowering elastic modulus of bacteria. ACS Appl Mater
Interfaces. 12:49346–49361. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
43
|
Van Poucke C, Verdegem E, Mangelinckx S
and Stevens CV: Synthesis and unambiguous NMR characterization of
linear and branched N-alkyl chitosan derivatives. Carbohydr Polym.
337:1221312024. View Article : Google Scholar : PubMed/NCBI
|
44
|
Burns J, Wilding CP, L Jones R and H Huang
P: Proteomic research in sarcomas-current status and future
opportunities. Semin Cancer Biol. 61:56–70. 2020. View Article : Google Scholar :
|
45
|
Musat V, Anghel EM, Zaharia A, Atkinson I,
Mocioiu OC, Busila M and Alexandru P: A Chitosan-Agarose
Polysaccharide-Based hydrogel for biomimetic remineralization of
dental enamel. Biomolecules. 11:11372021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu
SY, Zhou H, Chen L and Mao JJ: Biomaterial selection for tooth
regeneration. Tissue Eng Part B Rev. 17:373–388. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Feng P, Wu P, Gao C, Yang Y, Guo W, Yang W
and Shuai C: A multimaterial scaffold with tunable properties:
Toward bone tissue repair. Adv Sci (Weinh). 5:17008172018.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Li CJ, Liu XZ, Zhang L, Chen LB, Shi X, Wu
SJ and Zhao JN: Advances in bone-targeted drug delivery systems for
neoadjuvant chemotherapy for osteosarcoma. Orthop Surg. 8:105–110.
2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mauro N, Utzeri MA, Cillari R, Scialabba
C, Giammona G and Cavallaro G: Cholesterol-Inulin conjugates for
efficient SN38 nuclear delivery: Nanomedicines for precision cancer
therapy. Cancers (Basel). 14:48572022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Song H, Li H, Shen X, Liu K, Feng H, Cui
J, Wei W, Sun X, Fan Q, Bao W, et al: A pH-responsive
cetuximab-conjugated DMAKO-20 nano-delivery system for overcoming
K-ras mutations and drug resistance in colorectal carcinoma. Acta
Biomater. 177:456–471. 2024. View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang X, Wu J, Lv R, Bai Y, Wang C, Zhang F
and Liu Z: Bioinspired hydrogen peroxide-activated nanochannels and
their applications in cancer cell analysis. Anal Chem.
94:6234–6241. 2022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ma L, Zou X and Chen W: A new X-ray
activated nanoparticle photosensitizer for cancer treatment. J
Biomed Nanotechnol. 10:1501–1508. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Marosfoi MG, Korin N, Gounis MJ, Uzun O,
Vedantham S, Langan ET, Papa AL, Brooks OW, Johnson C, Puri AS, et
al: Shear-Activated nanoparticle aggregates combined with temporary
endovascular bypass to treat large vessel occlusion. Stroke.
46:3507–3513. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Meng Y, Chen S, Wang C and Ni X: Advances
in composite biofilm biomimetic nanodrug delivery systems for
cancer treatment. Technol Cancer Res Treat.
23:153303382412502442024. View Article : Google Scholar : PubMed/NCBI
|