1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zheng R, Zhang S, Zeng H, Wang S, Sun K,
Chen R, Li L, Wei W and He J: Cancer incidence and mortality in
China, 2016. J Natl Cancer Cent. 2:1–9. 2022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ferguson JL and Turner SP: Bone Cancer:
Diagnosis and treatment principles. Am Fam Physician. 98:205–213.
2018.PubMed/NCBI
|
4
|
Mensali N, Köksal H, Joaquina S, Wernhoff
P, Casey NP, Romecin P, Panisello C, Rodriguez R, Vimeux L,
Juzeniene A, et al: ALPL-1 is a target for chimeric antigen
receptor therapy in osteosarcoma. Nat Commun. 14:33752023.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao GS, Gao ZR, Zhang Q, Tang XF, Lv YF,
Zhang ZS, Zhang Y, Tan QL, Peng DB, Jiang DM and Guo QN: TSSC3
promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR
pathway to suppress tumorigenesis and metastasis in osteosarcoma,
and predicts a favorable prognosis. J Exp Clin Cancer Res.
37:1882018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kim YI, Tseng YC, Ayaz G, Wang S, Yan H,
du Bois W, Yang H, Zhen T, Lee MP, Liu P, et al: SOX9 is a key
component of RUNX2-regulated transcriptional circuitry in
osteosarcoma. Cell Biosci. 13:1362023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang S, Zhu N, Li HF, Gu J, Zhang CJ,
Liao DF and Qin L: The lipid rafts in cancer stem cell: A target to
eradicate cancer. Stem Cell Res Ther. 13:4322022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gibbs CP, Kukekov VG, Reith JD,
Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN and
Steindler DA: Stem-like cells in bone sarcomas: Implications for
tumorigenesis. Neoplasia. 7:967–976. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yan GN, Lv YF and Guo QN: Advances in
osteosarcoma stem cell research and opportunities for novel
therapeutic targets. Cancer Lett. 370:268–274. 2016. View Article : Google Scholar
|
10
|
Martins-Neves SR, Sampaio-Ribeiro G and
Gomes CMF: Self-Renewal and pluripotency in osteosarcoma stem
cells' chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin
Interplay with Embryonic Markers. Int J Mol Sci. 24:84012023.
View Article : Google Scholar
|
11
|
Ullmann P, Rodriguez F, Schmitz M, Meurer
SK, Qureshi-Baig K, Felten P, Ginolhac A, Antunes L, Frasquilho S,
Zügel N, et al: The miR-371~373 cluster represses colon cancer
initiation and metastatic colonization by inhibiting the TGFBR2/ID1
signaling axis. Cancer Res. 78:3793–3808. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taddei ML, Giannoni E, Fiaschi T and
Chiarugi P: Anoikis: An emerging hallmark in health and diseases. J
Pathol. 226:380–393. 2012. View Article : Google Scholar
|
13
|
Paoli P, Giannoni E and Chiarugi P:
Anoikis molecular pathways and its role in cancer progression.
Biochim Biophys Acta. 1833:3481–3498. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Han YH, Wang Y, Lee SJ, Jin MH, Sun HN and
Kwon T: Regulation of anoikis by extrinsic death receptor pathways.
Cell Commun Signal. 21:2272023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh
A, Sajjadian F and Velaei K: Understanding and targeting anoikis in
metastasis for cancer therapies. Cell Biol Int. 47:683–698. 2023.
View Article : Google Scholar
|
16
|
Sun T, Zhong X, Song H, Liu J, Li J, Leung
F, Lu WW and Liu ZL: Anoikis resistant mediated by FASN promoted
growth and metastasis of osteosarcoma. Cell Death Dis. 10:2982019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao GS, Zhang Q, Cao Y, Wang Y, Lv YF,
Zhang ZS, Zhang Y, Tan QL, Chang Y, Quan ZX, et al: High expression
of ID1 facilitates metastasis in human osteosarcoma by regulating
the sensitivity of anoikis via PI3K/AKT depended suppression of the
intrinsic apoptotic signaling pathway. Am J Transl Res.
11:2117–2139. 2019.PubMed/NCBI
|
18
|
Zhang M, Hoyle RG, Ma Z, Sun B, Cai W, Cai
H, Xie N, Zhang Y, Hou J, Liu X, et al: FOSL1 promotes metastasis
of head and neck squamous cell carcinoma through
super-enhancer-driven transcription program. Mol Ther.
29:2583–2600. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jiang X, Xie H, Dou Y, Yuan J, Zeng D and
Xiao S: Expression and function of FRA1 protein in tumors. Mol Biol
Rep. 47:737–752. 2020. View Article : Google Scholar
|
20
|
Guo S, Ramar V, Guo AA, Saafir T,
Akpobiyeri H, Hudson B, Li J and Liu M: TRPM7 transactivates the
FOSL1 gene through STAT3 and enhances glioma stemness. Cell Mol
Life Sci. 80:2702023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang T, Song P, Zhong T, Wang X, Xiang X,
Liu Q, Chen H, Xia T, Liu H, Niu Y, et al: The inflammatory
cytokine IL-6 induces FRA1 deacetylation promoting colorectal
cancer stem-like properties. Oncogene. 38:4932–4947. 2019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang K, Myllymäki SM, Gao P, Devarajan R,
Kytölä V, Nykter M, Wei GH and Manninen A: Oncogenic K-Ras
upregulates ITGA6 expression via FOSL1 to induce anoikis resistance
and synergizes with αV-Class integrins to promote EMT. Oncogene.
36:5681–5694. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shen H, Wang W, Ni B, Zou Q, Lu H and Wang
Z: Exploring the molecular mechanisms of osteosarcoma by the
integrated analysis of mRNAs and miRNA microarrays. Int J Mol Med.
42:21–30. 2018.PubMed/NCBI
|
24
|
Chandrashekar DS, Karthikeyan SK, Korla
PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne
U, et al: UALCAN: An update to the integrated cancer data analysis
platform. Neoplasia. 25:18–27. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao SJ, Jiang YQ, Xu NW, Li Q, Zhang Q,
Wang SY, Li J, Wang YH, Zhang YL, Jiang SH, et al: SPARCL1
suppresses osteosarcoma metastasis and recruits macrophages by
activation of canonical WNT/β-catenin signaling through
stabilization of the WNT-receptor complex. Oncogene. 37:1049–1061.
2018. View Article : Google Scholar
|
26
|
Bartha Á and Győrffy B: TNMplot.com: A web
tool for the comparison of gene expression in normal, tumor and
metastatic tissues. Int J Mol Sci. 22:26222021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Győrffy B: Discovery and ranking of the
most robust prognostic biomarkers in serous ovarian cancer.
Geroscience. 45:1889–1898. 2023. View Article : Google Scholar
|
28
|
Yang Y, Huang H, Li L and Yang Y:
Multiplex Immunohistochemistry Staining for Paraffin-embedded lung
cancer tissue. J Vis Exp. 2023. View
Article : Google Scholar
|
29
|
Wang Y, Zhang L, Zhao G, Zhang Y, Zhan F,
Chen Z, He T, Cao Y, Hao L, Wang Z, et al: Homologous targeting
nanoparticles for enhanced PDT against osteosarcoma HOS cells and
the related molecular mechanisms. J Nanobiotechnology. 20:832022.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yan GN, Tang XF, Zhang XC, He T, Huang YS,
Zhang X, Meng G, Guo DY, Lv YF and Guo QN: TSSC3 represses
self-renewal of osteosarcoma stem cells and Nanog expression by
inhibiting the Src/Akt pathway. Oncotarget. 8:85628–85641. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Naito S, von Eschenbach AC, Giavazzi R and
Fidler IJ: Growth and metastasis of tumor cells isolated from a
human renal cell carcinoma implanted into different organs of nude
mice. Cancer Res. 46:4109–4115. 1986.PubMed/NCBI
|
32
|
Hu Y and Smyth GK: ELDA: Extreme limiting
dilution analysis for comparing depleted and enriched populations
in stem cell and other assays. J Immunol Methods. 347:70–78. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Adhikari AS, Agarwal N, Wood BM, Porretta
C, Ruiz B, Pochampally RR and Iwakuma T: CD117 and Stro-1 identify
osteosarcoma tumor-initiating cells associated with metastasis and
drug resistance. Cancer Res. 70:4602–4612. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Marques C, Unterkircher T, Kroon P,
Oldrini B, Izzo A, Dramaretska Y, Ferrarese R, Kling E, Schnell O,
Nelander S, et al: NF1 regulates mesenchymal glioblastoma
plasticity and aggressiveness through the AP-1 transcription factor
FOSL1. Elife. 10:e648462021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gambera S, Abarrategi A, Rodríguez-Milla
MA, Mulero F, Menéndez ST, Rodriguez R, Navarro S and García-Castro
J: Role of Activator Protein-1 complex on the phenotype of human
osteosarcomas generated from mesenchymal stem cells. Stem Cells.
36:1487–1500. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Whittle SB, Offer K, Roberts RD, LeBlanc
A, London C, Majzner RG, Huang AY, Houghton P, Alejandro Sweet
Cordero E, Grohar PJ, et al: Charting a path for prioritization of
novel agents for clinical trials in osteosarcoma: A report from the
Children's Oncology Group New Agents for Osteosarcoma Task Force.
Pediatr Blood Cancer. 68:e291882021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hyakusoku H, Sawakuma K, Sano D, Takahashi
H, Hatano T, Sato K, Isono Y, Shimada S, Takada K, Kuwahara T, et
al: FosL1 regulates regional metastasis of head and neck squamous
cell carcinoma by promoting cell migration, invasion, and
proliferation. Anticancer Res. 41:3317–3326. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang
Q, Qin Y, Du X, Li W, Yuan Z, et al: Anoikis
resistance-protagonists of breast cancer cells survive and
metastasize after ECM detachment. Cell Commun Signal. 21:1902023.
View Article : Google Scholar
|
39
|
Celià-Terrassa T and Kang Y: Distinctive
properties of metastasis-initiating cells. Genes Dev. 30:892–908.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lee BK, Uprety N, Jang YJ, Tucker SK, Rhee
C, LeBlanc L, Beck S and Kim J: Fosl1 overexpression directly
activates trophoblast-specific gene expression programs in
embryonic stem cells. Stem Cell Res. 26:95–102. 2018. View Article : Google Scholar :
|
41
|
Qi XT, Li YL, Zhang YQ, Xu T, Lu B, Fang
L, Gao JQ, Yu LS, Zhu DF, Yang B, et al: KLF4 functions as an
oncogene in promoting cancer stem cell-like characteristics in
osteosarcoma cells. Acta Pharmacol Sin. 40:546–555. 2019.
View Article : Google Scholar :
|
42
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang
J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem
cell pathways for cancer therapy. Signal Transduct Target Ther.
5:82020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shonibare Z, Monavarian M, O'Connell K,
Altomare D, Shelton A, Mehta S, Jaskula-Sztul R, Phaeton R, Starr
MD, Whitaker R, et al: Reciprocal SOX2 regulation by SMAD1-SMAD3 is
critical for anoikis resistance and metastasis in cancer. Cell Rep.
40:1110662022. View Article : Google Scholar : PubMed/NCBI
|
44
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Guha D, Saha T, Bose S, Chakraborty S,
Dhar S, Khan P, Adhikary A, Das T and Sa G: Integrin-EGFR
interaction regulates anoikis resistance in colon cancer cells.
Apoptosis. 24:958–971. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chen Z, Wang S, Li HL, Luo H, Wu X, Lu J,
Wang HW, Chen Y, Chen D, Wu WT, et al: FOSL1 promotes
proneural-to-mesenchymal transition of glioblastoma stem cells via
UBC9/CYLD/NF-κB axis. Mol Ther. 30:2568–2583. 2022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li R, Che W, Liang N, Deng S, Song Z and
Yang L: Silent FOSL1 enhances the radiosensitivity of glioma stem
cells by down-regulating miR-27a-5p. Neurochem Res. 46:3222–3246.
2021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Talukdar S, Pradhan AK, Bhoopathi P, Shen
XN, August LA, Windle JJ, Sarkar D, Furnari FB, Cavenee WK, Das SK,
et al: MDA-9/Syntenin regulates protective autophagy in
anoikis-resistant glioma stem cells. Proc Natl Acad Sci USA.
115:5768–5773. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kim SY, Hong SH, Basse PH, Wu C, Bartlett
DL, Kwon YT and Lee YJ: Cancer stem cells protect non-stem cells
from Anoikis: Bystander effects. J Cell Biochem. 117:2289–2301.
2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xiong G, Ouyang S, Xie N, Xie J, Wang W,
Yi C, Zhang M, Xu X, Chen D and Wang C: FOSL1 promotes tumor growth
and invasion in ameloblastoma. Front Oncol. 12:9001082022.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Basu-Roy U, Seo E, Ramanathapuram L, Rapp
TB, Perry JA, Orkin SH, Mansukhani A and Basilico C: Sox2 maintains
self renewal of tumor-initiating cells in osteosarcomas. Oncogene.
31:2270–2282. 2012. View Article : Google Scholar
|
52
|
Ren C, Ren T, Yang K, Wang S, Bao X, Zhang
F and Guo W: Inhibition of SOX2 induces cell apoptosis and G1/S
arrest in Ewing's sarcoma through the PI3K/Akt pathway. J Exp Clin
Cancer Res. 35:442016. View Article : Google Scholar : PubMed/NCBI
|