1
|
Anderson JL and Morrow DA: Acute
myocardial infarction. N Engl J Med. 376:2053–2064. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Algoet M, Janssens S, Himmelreich U, Gsell
W, Pusovnik M, Van den Eynde J and Oosterlinck W: Myocardial
ischemia-reperfusion injury and the influence of inflammation.
Trends Cardiovasc Med. 33:357–366. 2023. View Article : Google Scholar
|
3
|
Salari N, Morddarvanjoghi F, Abdolmaleki
A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA, Shohaimi S and
Mohammadi M: The global prevalence of myocardial infarction: A
systematic review and meta-analysis. BMC Cardiovasc Disord.
23:2062023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Martí-Pàmies Í, Thoonen R, Morley M,
Graves L, Tamez J, Caplan A, McDaid K, Yao V, Hindle A, Gerszten
RE, et al: Brown adipose tissue and BMP3b decrease injury in
cardiac ischemia-reperfusion. Circ Res. 133:353–365. 2023.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Xue Y, Fu W, Yu P, Li Y, Yu X, Xu H and
Sui D: Ginsenoside Rc alleviates myocardial ischemia-reperfusion
injury by reducing mitochondrial oxidative stress and apoptosis:
Role of SIRT1 activation. J Agric Food Chem. 71:1547–1561. 2023.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y,
Liu J, Bi W, Sha P, Li X, et al: Downregulation of LAPTM4B
contributes to the impairment of the autophagic flux via unopposed
activation of mTORC1 signaling during myocardial
ischemia/reperfusion injury. Circ Res. 127:e148–e165. 2020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Cai W, Liu L, Shi X, Liu Y, Wang J, Fang
X, Chen Z, Ai D, Zhu Y and Zhang X: Alox15/15-HpETE aggravates
myocardial ischemia-reperfusion injury by promoting cardiomyocyte
ferroptosis. Circulation. 147:1444–1460. 2023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Del Re DP, Amgalan D, Linkermann A, Liu Q
and Kitsis RN: Fundamental mechanisms of regulated cell death and
implications for heart disease. Physiol Rev. 99:1765–1817. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Sciarretta S, Maejima Y, Zablocki D and
Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol.
80:1–26. 2018. View Article : Google Scholar
|
10
|
Chen X, Xie Q, Zhu Y, Xu J, Lin G, Liu S,
Su Z, Lai X, Li Q, Xie J, et al: Cardio-protective effect of
tetrahydrocurcumin, the primary hydrogenated metabolite of curcumin
in vivo and in vitro: Induction of apoptosis and autophagy via
PI3K/AKT/mTOR pathways. Eur J Pharmacol. 911:1744952021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Steinberg GR and Hardie DG: New insights
into activation and function of the AMPK. Nat Rev Mol Cell Biol.
24:255–272. 2023. View Article : Google Scholar
|
12
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fang X, Ardehali H, Min J and Wang F: The
molecular and metabolic landscape of iron and ferroptosis in
cardiovascular disease. Nat Rev Cardiol. 20:7–23. 2023. View Article : Google Scholar
|
14
|
Xing G, Meng L, Cao S, Liu S, Wu J, Li Q,
Huang W and Zhang L: PPARα alleviates iron overload-induced
ferroptosis in mouse liver. EMBO Rep. 23:e522802022. View Article : Google Scholar
|
15
|
Hu T, Zou HX, Le SY, Wang YR, Qiao YM,
Yuan Y, Liu JC, Lai SQ and Huang H: Tanshinone IIA confers
protection against myocardial ischemia/reperfusion injury by
inhibiting ferroptosis and apoptosis via VDAC1. Int J Mol Med.
52:109 [pii]2023. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu B, Zhao C, Li H, Chen X, Ding Y and Xu
S: Puerarin protects against heart failure induced by pressure
overload through mitigation of ferroptosis. Biochem Biophys Res
Commun. 497:233–240. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cao JF, Gong Y, Wu M, Xiong L, Chen S,
Huang H, Zhou X, Peng YC, Shen XF, Qu J, et al: Molecular docking
and molecular dynamics study Lianhua Qingwen granules (LHQW) treats
COVID-19 by inhibiting inflammatory response and regulating cell
survival. Front Cell Infect Microbiol. 12:10447702022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho
S and Anstey NM: Malaria. Lancet. 402:2328–2345. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang ZK, Chen RR, Li JH, Chen JY, Li W,
Niu XL, Wang FF, Wang J and Yang JX: Puerarin protects against
myocardial ischemia/reperfusion injury by inhibiting inflammation
and the NLRP3 inflammasome: The role of the SIRT1/NF-κB pathway.
Int Immunopharmacol. 89:1070862020. View Article : Google Scholar
|
20
|
Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou
J, Zhang J, Jin Z and Yi D: The effects of curcumin post-treatment
against myocardial ischemia and reperfusion by activation of the
JAK2/STAT3 signaling pathway. Basic Res Cardiol. 107:2632012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhu P, Yang M, He H, Kuang Z, Liang M, Lin
A, Liang S, Wen Q, Cheng Z and Sun C: Curcumin attenuates
hypoxia/reoxygenation-induced cardiomyocyte injury by
downregulating Notch signaling. Mol Med Rep. 20:1541–1550.
2019.PubMed/NCBI
|
22
|
Huang H, Lai S, Wan Q, Qi W and Liu J:
Astragaloside IV protects cardiomyocytes from anoxia/reoxygenation
injury by upregulating the expression of Hes1 protein. Can J
Physiol Pharmacol. 94:542–553. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yu L, Li F, Zhao G, Yang Y, Jin Z, Zhai M,
Yu W, Zhao L, Chen W, Duan W, et al: Protective effect of berberine
against myocardial ischemia reperfusion injury: role of
Notch1/Hes1-PTEN/Akt signaling. Apoptosis. 20:796–810. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Flameng W, Borgers M, Daenen W and
Stalpaert G: Ultrastructural and cytochemical correlates of
myocardial protection by cardiac hypothermia in man. J Thorac
Cardiovasc Surg. 79:413–424. 1980. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG and
Gao LC: System X(c) (-)/GSH/GPX4 axis: An important antioxidant
system for the ferroptosis in drug-resistant solid tumor therapy.
Front Pharmacol. 13:9102922022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J,
Cao T, Wang K, Shi N, Zhou H, et al: Empagliflozin attenuates
cardiac microvascular ischemia/reperfusion through activating the
AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 52:1022882022.
View Article : Google Scholar
|
27
|
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci
B, Xie Y, Carlson D, Rothermel BA, Sun Y, et al: Beclin-1-dependent
autophagy protects the heart during sepsis. Circulation.
138:2247–2262. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ye T, Yang W, Gao T, Yu X, Chen T, Yang Y,
Guo J, Li Q, Li H and Yang L: Trastuzumab-induced cardiomyopathy
via ferroptosis-mediated mitochondrial dysfunction. Free Radic Biol
Med. 206:143–161. 2023. View Article : Google Scholar : PubMed/NCBI
|
29
|
Herzig S and Shaw RJ: AMPK: Guardian of
metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol.
19:121–135. 2018. View Article : Google Scholar :
|
30
|
Zhao D, Liu J, Wang M, Zhang X and Zhou M:
Epidemiology of cardiovascular disease in China: Current features
and implications. Nat Rev Cardiol. 16:203–212. 2019. View Article : Google Scholar
|
31
|
Sawashita Y, Hirata N, Yoshikawa Y, Terada
H, Tokinaga Y and Yamakage M: Remote ischemic preconditioning
reduces myocardial ischemia-reperfusion injury through unacylated
ghrelin-induced activation of the JAK/STAT pathway. Basic Res
Cardiol. 115:502020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu X, Liu L, Zheng Q, Ye H, Yang H, Hao H
and Li P: Dihydrotanshinone I preconditions myocardium against
ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta
Pharm Sin B. 13:113–127. 2023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu
HJ, Yang ZL, Yang Y and Wang HS: Naringenin improves mitochondrial
function and reduces cardiac damage following ischemia-reperfusion
injury: the role of the AMPK-SIRT3 signaling pathway. Food Funct.
10:2752–2765. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wan J, Zhang Z, Wu C, Tian S, Zang Y, Jin
G, Sun Q, Wang P, Luan X, Yang Y, et al: Astragaloside IV
derivative HHQ16 ameliorates infarction-induced hypertrophy and
heart failure through degradation of lncRNA4012/9456. Signal
Transduct Target Ther. 8:4142023. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L,
Chen S, Si J, Liu Y, Sha D, Xu B and Ni J: Ceria nanozyme
coordination with curcumin for treatment of sepsis-induced cardiac
injury by inhibiting ferroptosis and inflammation. J Adv Res.
63:159–170. 2023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ruan Y, Xiong Y, Fang W, Yu Q, Mai Y, Cao
Z, Wang K, Lei M, Xu J, Liu Y, et al: Highly sensitive
curcumin-conjugated nanotheranostic platform for detecting
amyloid-beta plaques by magnetic resonance imaging and reversing
cognitive deficits of Alzheimer's disease via NLRP3-inhibition. J
Nanobiotechnology. 20:3222022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang X, Zhang Y, Yang Y, Zhang W, Luo L,
Han F, Guan H, Tao K and Hu D: Curcumin pretreatment protects
against hypoxia/reoxgenation injury via improvement of
mitochondrial function, destabilization of HIF-1α and activation of
Epac1-Akt pathway in rat bone marrow mesenchymal stem cells. Biomed
Pharmacother. 109:1268–1275. 2019. View Article : Google Scholar
|
38
|
Kim YS, Kwon JS, Cho YK, Jeong MH, Cho JG,
Park JC, Kang JC and Ahn Y: Curcumin reduces the cardiac
ischemia-reperfusion injury: Involvement of the toll-like receptor
2 in cardiomyocytes. J Nutr Biochem. 23:1514–1523. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bo H and Feng X: Post-treatment curcumin
reduced ischemia-reperfusion-induced pulmonary injury via the
Notch2/Hes-1 pathway. J Int Med Res. 48:3000605198924322020.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang M, Yu LM, Zhao H, Zhou XX, Yang Q,
Song F, Yan L, Zhai ME, Li BY, Zhang B, et al:
2,3,5,4′-Tetrahydroxystilbe ne-2-O-β-D-glucoside protects murine
hearts against ischemia/reperfusion injury by activating
Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress.
Acta Pharmacol Sin. 38:317–330. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhou XL, Wan L, Xu QR, Zhao Y and Liu JC:
Notch signaling activation contributes to cardioprotection provided
by ischemic preconditioning and postconditioning. J Transl Med.
11:2512013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhou XL, Zhao Y, Fang YH, Xu QR and Liu
JC: Hes1 is upregulated by ischemic postconditioning and
contributes to cardioprotection. Cell Biochem Funct. 32:730–736.
2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo
Y, Wu Q, Wan L, Liu J and Huang H: Ischemic
preconditioning/ischemic post-conditioning alleviates
anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J
Biochem Mol Toxicol. 36:e231992022. View Article : Google Scholar
|
44
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun
Y, Wang Q, Tan Y, Keller BB, Tong Q, et al: Ferroptosis is
essential for diabetic cardiomyopathy and is prevented by
sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 12:708–722.
2022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Galy B, Conrad M and Muckenthaler M:
Mechanisms controlling cellular and systemic iron homeostasis. Nat
Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar
|
47
|
Jankowska EA, Kasztura M, Sokolski M,
Bronisz M, Nawrocka S, Oleśkowska-Florek W, Zymliński R, Biegus J,
Siwołowski P, Banasiak W, et al: Iron deficiency defined as
depleted iron stores accompanied by unmet cellular iron
requirements identifies patients at the highest risk of death after
an episode of acute heart failure. Eur Heart J. 35:2468–2476. 2014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Fang X, Cai Z, Wang H, Han D, Cheng Q,
Zhang P, Gao F, Yu Y, Song Z, Wu Q, et al: Loss of cardiac ferritin
H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ
Res. 127:486–501. 2020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Fleming RE and Ponka P: Iron overload in
human disease. N Engl J Med. 366:348–359. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Li D, Zhang G, Wang Z, Guo J, Liu Y, Lu Y,
Qin Z, Xu Y, Cao C, Wang B, et al: Idebenone attenuates ferroptosis
by inhibiting excessive autophagy via the ROS-AMPK-mTOR pathway to
preserve cardiac function after myocardial infarction. Eur J
Pharmacol. 943:1755692023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ye Y, Chen A, Li L, Liang Q, Wang S, Dong
Q, Fu M, Lan Z, Li Y, Liu X, et al: Repression of the antiporter
SLC7A11/glutathione/glutathione peroxidase 4 axis drives
ferroptosis of vascular smooth muscle cells to facilitate vascular
calcification. Kidney Int. 102:1259–1275. 2022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ikeda S, Zablocki D and Sadoshima J: The
role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol.
165:1–8. 2022. View Article : Google Scholar :
|
53
|
Liu W, Chen C, Gu X, Zhang L, Mao X, Chen
Z and Tao L: AM1241 alleviates myocardial ischemia-reperfusion
injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life
Sci. 272:1192282021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Li Y, Liang P, Jiang B, Tang Y, Liu X, Liu
M, Sun H, Chen C, Hao H, Liu Z, et al: CARD9 promotes autophagy in
cardiomyocytes in myocardial ischemia/reperfusion injury via
interacting with Rubicon directly. Basic Res Cardiol. 115:292020.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Wen L, Cheng X, Fan Q, Chen Z, Luo Z, Xu
T, He M and He H: TanshinoneⅡA inhibits excessive autophagy and
protects myocardium against ischemia/reperfusion injury via
14-3-3η/Akt/Beclin1 pathway. Eur J Pharmacol. 954:1758652023.
View Article : Google Scholar
|
56
|
Fan G, Yu J, Asare PF, Wang L, Zhang H,
Zhang B, Zhu Y and Gao X: Danshensu alleviates cardiac
ischaemia/reperfusion injury by inhibiting autophagy and apoptosis
via activation of mTOR signalling. J Cell Mol Med. 20:1908–1919.
2016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Mohamed DZ, El-Sisi A, Sokar SS, Shebl AM
and Abu-Risha SE: Targeting autophagy to modulate hepatic
ischemia/reperfusion injury: A comparative study between octreotide
and melatonin as autophagy modulators through
AMPK/PI3K/AKT/mTOR/ULK1 and Keap1/Nrf2 signaling pathways in rats.
Eur J Pharmacol. 897:1739202021. View Article : Google Scholar : PubMed/NCBI
|
58
|
Mancardi D, Pagliaro P, Ridnour LA,
Tocchetti CG, Miranda K, Juhaszova M, Sollott SJ, Wink DA and
Paolocci N: HNO protects the myocardium against reperfusion injury,
inhibiting the mPTP opening via PKCε activation. Antioxidants
(Basel). 11:3822022. View Article : Google Scholar
|
59
|
Pan P, Zhang H, Su L, Wang X and Liu D:
Melatonin balance the autophagy and apoptosis by regulating UCP2 in
the LPS-induced cardiomyopathy. Molecules. 23:6752018. View Article : Google Scholar : PubMed/NCBI
|