Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review)
- Authors:
- Zihan Li
- Yihao Tian
-
Affiliations: Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China, Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China - Published online on: October 23, 2024 https://doi.org/10.3892/ijmm.2024.5446
- Article Number: 5
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Barrio-Hernandez I, Jafari A, Rigbolt KTG, Hallenborg P, Sanchez-Quiles V, Skovrind I, Akimov V, Kratchmarova I, Dengjel J, Kassem M and Blagoev B: Phosphoproteomic profiling reveals a defined genetic program for osteoblastic lineage commitment of human bone marrow-derived stromal stem cells. Genome Res. 30:127–137. 2020. View Article : Google Scholar : | |
Mousa A, Cui C, Song A, Myneni VD, Sun H, Li JJ, Murshed M, Melino G and Kaartinen MT: Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ. 24:844–854. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, Hackinger S, Boer CG, Styrkarsdottir U, Gilly A, et al: Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet. 50:549–558. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jones IA, Togashi R, Wilson ML, Heckmann N and Vangsness CT Jr: Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 15:77–90. 2019. View Article : Google Scholar : | |
Lopes D, Martins-Cruz C, Oliveira MB and Mano JF: Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 185:240–275. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Cao F, Zhou W, Wang G, Liu G, Xia T, Liu M, Mi B and Liu Y: Long Noncoding RNA FAM83H-AS1 Modulates SpA-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells. Mol Cell Biol. 40:e00362–19. 2020. View Article : Google Scholar : | |
Zhu H, Kimura T, Swami S and Wu JY: Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials. 196:31–45. 2019. View Article : Google Scholar | |
Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klaumünzer A, Schreivogel S, Woloszyk A, Schmidt-Bleek K, et al: A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun. 9:44302018. View Article : Google Scholar : PubMed/NCBI | |
Fukuda M, Yoshizawa T, Karim MF, Sobuz SU, Korogi W, Kobayasi D, Okanishi H, Tasaki M, Ono K, Sawa T, et al: SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nat Commun. 9:28332018. View Article : Google Scholar : PubMed/NCBI | |
Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, et al: Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix. ACS Nano. 13:11320–11333. 2019. View Article : Google Scholar : PubMed/NCBI | |
Scheper MA, Badros A, Chaisuparat R, Cullen KJ and Meiller TF: Effect of zoledronic acid on oral fibroblasts and epithelial cells: A potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol. 144:667–676. 2009. View Article : Google Scholar : | |
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP and Picart C: Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 180:143–162. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ting K, Vastardis H, Mulliken JB, Soo C, Tieu A, Do H, Kwong E, Bertolami CN, Kawamoto H, Kuroda S and Longaker MT: Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res. 14:80–89. 1999. View Article : Google Scholar : PubMed/NCBI | |
James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS, et al: NELL-1 in the treatment of osteoporotic bone loss. Nat Commun. 6:73622015. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Hasebe A, Takahashi K, Iijima M, Yoshimoto N, Maturana AD, Ting K, Kuroda S and Niimi T: Oligomerization-induced conformational change in the C-terminal region of Nel-like molecule 1 (NELL1) protein is necessary for the efficient mediation of murine MC3T3-E1 cell adhesion and spreading. J Biol Chem. 289:9781–9794. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuroda S, Oyasu M, Kawakami M, Kanayama N, Tanizawa K, Saito N, Abe T, Matsuhashi S and Ting K: Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res Commun. 265:79–86. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kajava AV: Modeling of a five-stranded coiled coil structure for the assembly domain of the cartilage oligomeric matrix protein. Proteins. 24:218–226. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kuroda S and Tanizawa K: Involvement of epidermal growth factor-like domain of NELL proteins in the novel protein-protein interaction with protein kinase C. Biochem Biophys Res Commun. 265:752–757. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bornstein P: Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J Cell Biol. 130:503–506. 1995. View Article : Google Scholar : PubMed/NCBI | |
Garcia Abreu J, Coffinier C, Larrain J, Oelgeschlager M and De Robertis EM: Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene. 287:39–47. 2002. View Article : Google Scholar : PubMed/NCBI | |
Duarte RM, Varanda P, Reis RL, Duarte ARC and Correia-Pinto J: Biomaterials and Bioactive Agents in Spinal Fusion. Tissue Eng Part B Rev. 23:540–551. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X and Chen Q: Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 13:4862022. View Article : Google Scholar : PubMed/NCBI | |
Smith B, Goldstein T and Ekstein C: Biologic adjuvants and bone: Current use in orthopedic surgery. Curr Rev Musculoskelet Med. 8:193–199. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cottrill E, Ahmed AK, Lessing N, Pennington Z, Ishida W, Perdomo-Pantoja A, Lo SF, Howell E, Holmes C, Goodwin CR, et al: Investigational growth factors utilized in animal models of spinal fusion: Systematic review. World J Orthop. 10:176–191. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qin XY, Zhao HX, Zhang Q, Chen F and Lin JX: NELL-1: A novel highly efficient and specific growth factor. Beijing Da Xue Xue Bao Yi Xue Ban. 48:380–383. 2016.In Chinese. PubMed/NCBI | |
Zhang Y, Jiang Y, Zou D, Yuan B, Ke HZ and Li W: Therapeutics for enhancement of spinal fusion: A mini review. J Orthop Translat. 31:73–79. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, James AW, Shi B and Zhang X: NELL-1 in Genome-Wide Association Studies across Human Diseases. Am J Pathol. 192:395–405. 2022. View Article : Google Scholar : | |
Li C, Zhang X, Zheng Z, Nguyen A, Ting K and Soo C: Nell-1 is a key functional modulator in osteochondrogenesis and beyond. J Dent Res. 98:1458–1468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pakvasa M, Alverdy A, Mostafa S, Wang E, Fu L, Li A, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, et al: Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis. 4:127–137. 2017. View Article : Google Scholar : PubMed/NCBI | |
James AW: Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013:6847362013. | |
Setzer B, Bächle M, Metzger MC and Kohal RJ: The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 30:979–990. 2009. View Article : Google Scholar | |
Iwan A, Moskalewski S and Hyc A: Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation. Biomed Rep. 14:542021. View Article : Google Scholar : PubMed/NCBI | |
Song D, Huang S, Zhang L, Liu W, Huang B, Feng Y, Liu B, He TC, Huang D and Reid RR: Differential Responsiveness to BMP9 between patent and fused suture progenitor cells from craniosynostosis patients. Plast Reconstr Surg. 145:552e–562e. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Cen X, Xia K, Huang X, Sun W, Zhao Z and Liu J: microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation. J Cell Biochem. 121:4623–4641. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, Ho S, Kim HJ, Ting K and Soo C: BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A. 19:2390–2401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cowan CM, Jiang X, Hsu T, Soo C, Zhang B, Wang JZ, Kuroda S, Wu B, Zhang Z, Zhang X and Ting K: Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res. 22:918–930. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fahmy-Garcia S, van Driel M, Witte-Buoma J, Walles H, van Leeuwen JPTM, van Osch GJVM and Farrell E: NELL-1, HMGB1, and CCN2 enhance migration and vasculogenesis, but not osteogenic differentiation compared to BMP2. Tissue Eng Part A. 24:207–218. 2018. View Article : Google Scholar | |
Zhang X, Zara J, Siu RK, Ting K and Soo C: The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res. 89:865–878. 2010. View Article : Google Scholar : PubMed/NCBI | |
James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J, et al: Perivascular stem cells: A prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med. 1:510–519. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K and Soo C: Nell-1-induced bone regeneration in calvarial defects. Am J Pathol. 169:903–915. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aghaloo T, Jiang X, Soo C, Zhang Z and Zhang X, Hu J, Pan H, Hsu T, Wu B, Ting K and Zhang X: A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther. 15:1872–1880. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cowan CM, Zhang X, James AW, Kim TM, Sun N, Wu B, Ting K and Soo C: NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2. Biochem Biophys Res Commun. 422:351–357. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hyc A, Moskalewski S and Osiecka-Iwan A: Growth factors in the initial stage of bone formation, analysis of their expression in chondrocytes from epiphyseal cartilage of rat costochondral junction. Folia Histochem Cytobiol. 59:178–186. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cowan CM, Cheng S, Ting K, Soo C, Walder B, Wu B, Kuroda S and Zhang X: Nell-1 induced bone formation within the distracted intermaxillary suture. Bone. 38:48–58. 2006. View Article : Google Scholar | |
Truong T, Zhang X, Pathmanathan D, Soo C and Ting K: Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res. 22:7–18. 2007. View Article : Google Scholar | |
Zhang X, Ting K, Bessette CM, Culiat CT, Sung SJ, Lee H, Chen F, Shen J, Wang JJ, Kuroda S and Soo C: Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(+/−) mice. J Bone Miner Res. 26:777–791. 2011. View Article : Google Scholar | |
Li C, Jiang J, Zheng Z, Lee KS, Zhou Y, Chen E, Culiat CT, Qiao Y, Chen X, Ting K, et al: Neural EGFL-Like 1 is a downstream regulator of runt-related transcription factor 2 in chondrogenic differentiation and maturation. Am J Pathol. 187:963–972. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhang X, Sun S, Zara JN, Zou X, Chiu R, Culiat CT, Ting K and Soo C: NELL-1, an osteoinductive factor, is a direct transcriptional target of Osterix. PLoS One. 6:e246382011. View Article : Google Scholar : PubMed/NCBI | |
Lai K, Xi Y, Du X, Jiang Z, Li Y, Huang T, Miao X, Wang H, Wang Y and Yang G: Activation of Nell-1 in BMSC sheet promotes implant osseointegration through regulating Runx2/Osterix Axis. Front Cell Dev Biol. 8:8682020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ting K, Pathmanathan D, Ko T, Chen W, Chen F, Lee H, James AW, Siu RK, Shen J, et al: Calvarial cleidocraniodysplasia-like defects with ENU-induced Nell-1 deficiency. J Craniofac Surg. 23:61–66. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K and Wang JC: The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 7:50–60. 2007. View Article : Google Scholar : PubMed/NCBI | |
James AW, Pang S, Askarinam A, Corselli M, Zara JN, Goyal R, Chang L, Pan A, Shen J, Yuan W, et al: Additive effects of sonic hedgehog and Nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev. 21:2170–2178. 2012. View Article : Google Scholar : PubMed/NCBI | |
James AW, Pan A, Chiang M, Zara JN, Zhang X, Ting K and Soo C: A new function of Nell-1 protein in repressing adipogenic differentiation. Biochem Biophys Res Commun. 411:126–131. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Kim JK, Ha P, Chen X, Chen E, Chen Y, Li J, Pan HC, Yu M, Mohazeb Y, et al: Inactivation of Nell-1 in chondrocytes significantly impedes appendicular skeletogenesis. J Bone Miner Res. 34:533–546. 2019. View Article : Google Scholar | |
Li C, Zheng Z, Zhang X, Asatrian G, Chen E, Song R, Culiat C, Ting K and Soo C: Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes. Int J Mol Sci. 19:1682018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang Y, Wang C, Liu C, Li W, Hu S, Wu N, Jiang S and Shi J: Therapeutic application of 3B-PEG injectable hydrogel/Nell-1 composite system to temporomandibular joint osteoarthritis. Biomed Mater. 17:0150042021. View Article : Google Scholar | |
Chen W, Zhang X, Siu RK, Chen F, Shen J, Zara JN, Culiat CT, Tetradis S, Ting K and Soo C: Nfatc2 is a primary response gene of Nell-1 regulating chondrogenesis in ATDC5 cells. J Bone Miner Res. 26:1230–1241. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen J, James AW, Zhang X, Pang S, Zara JN, Asatrian G, Chiang M, Lee M, Khadarian K, Nguyen A, et al: Novel Wnt Regulator NEL-Like Molecule-1 antagonizes adipogenesis and augments osteogenesis induced by bone morphogenetic protein 2. Am J Pathol. 186:419–434. 2016. View Article : Google Scholar : PubMed/NCBI | |
James AW, Shen J, Tsuei R, Nguyen A, Khadarian K, Meyers CA, Pan HC, Li W, Kwak JH, Asatrian G, et al: NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCI Insight. 2:e925732017. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P, Jiang W, Chen E, Luo X, Needle RB, et al: Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ. 27:1415–1430. 2020. View Article : Google Scholar : | |
Zhang X, Kuroda S, Carpenter D, Nishimura I, Soo C, Moats R, Iida K, Wisner E, Hu FY, Miao S, et al: Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest. 110:861–870. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chermside-Scabbo CJ, Harris TL, Brodt MD, Braenne I, Zhang B, Farber CR and Silva MJ: Old mice have less transcriptional activation but similar periosteal cell proliferation compared to young-adult mice in response to in vivo mechanical loading. J Bone Miner Res. 35:1751–1764. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zheng Z, Ha P, Chen X, Jiang W, Sun S, Chen F, Asatrian G, Berthiaume EA, Kim JK, et al: Neurexin superfamily cell membrane receptor contactin-associated protein Like-4 (Cntnap4) Is Involved in Neural EGFL-Like 1 (Nell-1)-Responsive Osteogenesis. J Bone Miner Res. 33:1813–1825. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto N, Kashiwagi M, Ishihara M, Kojima T, Maturana AD, Kuroda S and Niimi T: Robo2 contains a cryptic binding site for neural EGFL-like (NELL) protein 1/2. J Biol Chem. 294:4693–4703. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bokui N, Otani T, Igarashi K, Kaku J, Oda M, Nagaoka T, Seno M, Tatematsu K, Okajima T, Matsuzaki T, et al: Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Lett. 582:365–371. 2008. View Article : Google Scholar | |
Huang X, Cen X, Zhang B, Liao Y, Zhao Z, Zhu G, Zhao Z and Liu J: The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis. J Cell Mol Med. 23:8432–8441. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shen J, James AW, Chung J, Lee K, Zhang JB, Ho S, Lee KS, Kim TM, Niimi T, Kuroda S, et al: NELL-1 promotes cell adhesion and differentiation via Integrinβ1. J Cell Biochem. 113:3620–3628. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zou X, Shen J, Chen F, Ting K, Zheng Z, Pang S, Zara JN, Adams JS, Soo C and Zhang X: NELL-1 binds to APR3 affecting human osteoblast proliferation and differentiation. FEBS Lett. 585:2410–2418. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zheng Z, Ha P, Jiang W, Berthiaume EA, Lee S, Mills Z, Pan H, Chen EC, Jiang J, et al: Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug. Biomaterials. 226:1195412020. View Article : Google Scholar : | |
Wang C, Hou W, Guo X, Li J, Hu T, Qiu M, Liu S, Mo X and Liu X: Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng C Mater Biol Appl. 79:507–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siu RK, Zara JN, Hou Y, James AW, Kwak J, Zhang X, Ting K, Wu BM, Soo C and Lee M: NELL-1 promotes cartilage regeneration in an in vivo rabbit model. Tissue Eng Part A. 18:252–261. 2012. View Article : Google Scholar : | |
Kwak J, Zara JN, Chiang M, Ngo R, Shen J, James AW, Le KM, Moon C, Zhang X, Gou Z, et al: NELL-1 injection maintains long-bone quantity and quality in an ovariectomy-induced osteoporotic senile rat model. Tissue Eng Part A. 19:426–436. 2013. View Article : Google Scholar : | |
James AW, Zhang X, Crisan M, Hardy WR, Liang P, Meyers CA, Lobo S, Lagishetty V, Childers MK, Asatrian G, et al: Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS One. 12:e01773082017. View Article : Google Scholar : PubMed/NCBI | |
Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP and Demissie S: Genome-wide pleiotropy of osteoporosis-related phenotypes: The Framingham Study. J Bone Miner Res. 25:1555–1563. 2010. View Article : Google Scholar : PubMed/NCBI | |
Inaba H, Cao X, Han AQ, Panetta JC, Ness KK, Metzger ML, Rubnitz JE, Ribeiro RC, Sandlund JT, Jeha S, et al: Bone mineral density in children with acute lymphoblastic leukemia. Cancer. 124:1025–1035. 2018. View Article : Google Scholar | |
Zhang X, Carpenter D, Bokui N, Soo C, Miao S, Truong T, Wu B, Chen I, Vastardis H, Tanizawa K, et al: Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. J Bone Miner Res. 18:2126–2134. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Cowan CM, Jiang X, Soo C, Miao S, Carpenter D, Wu B, Kuroda S and Ting K: Nell-1 induces acrania-like cranio-skeletal deformities during mouse embryonic development. Lab Invest. 86:633–644. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Wang Q, Du J, Yang P and Wang X: Expression and localization of Nell-1 during murine molar development. J Mol Histol. 44:175–181. 2013. View Article : Google Scholar | |
Wang B, Wu Y, Yu H, Jiang L, Fang B and Guo Q: The effects of NELL on corticotomy-assisted tooth movement and osteogenesis in a rat model. Biomed Mater Eng. 29:757–771. 2018.PubMed/NCBI | |
Cao R, Wang Q, Wu J, Liu M, Han Q and Wang X: Nell-1 attenuates lipopolysaccharide-induced inflammation in human dental pulp cells. J Mol Histol. 52:671–680. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Wang Q, Tang R, Cao R and Wang X: Nel-like molecule 1 contributes to the odontoblastic differentiation of human dental pulp cells. J Endod. 42:95–100. 2016. View Article : Google Scholar | |
Hu JZ, Zhang ZY, Zhao J, Zhang XL, Liu GT and Jiang XQ: An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice. Chin Med J (Engl). 122:972–979. 2009.PubMed/NCBI | |
Zhu S, Song D, Jiang X, Zhou H and Hu J: Combined effects of recombinant human BMP-2 and Nell-1 on bone regeneration in rapid distraction osteogenesis of rabbit tibia. Injury. 42:1467–1473. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aghaloo T, Cowan CM, Zhang X, Freymiller E, Soo C, Wu B, Ting K and Zhang Z: The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg. 68:300–308. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Lam WMR, Naidu M, Yang Z, Wang M, Ren X, Hu T, Kumarsing R, Ting K, Goh JC and Wong HK: Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Eng Part A. 25:1677–1689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Xu Y, Chang Q, Sun X, Zeng D, Zhang W, Zhang X, Zhang Z and Jiang X: Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int. 89:53–64. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wang Q, Han Q, Zhu H, Li M, Fang Y and Wang X: Effects of Nel-like molecule-1 and bone morphogenetic protein 2 combination on rat pulp repair. J Mol Histol. 50:253–261. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wing Moon Lam R, Abbah SA, Ming W, Naidu M, Ng F, Tao H, Goh Cho Hong J, Ting K and Hee Kit W: Polyelectrolyte complex for heparin binding domain osteogenic growth factor delivery. J Vis Exp. (114): 542022016.PubMed/NCBI | |
Li CS, Zhang X, Péault B, Jiang J, Ting K, Soo C and Zhou YH: Accelerated chondrogenic differentiation of human perivascular stem cells with NELL-1. Tissue Eng Part A. 22:272–285. 2016. View Article : Google Scholar : | |
Lee S, Wang C, Pan HC, Shrestha S, Meyers C, Ding C, Shen J, Chen E, Lee M, Soo C, et al: Combining Smoothened Agonist and NEL-Like Protein-1 Enhances Bone Healing. Plast Reconstr Surg. 139:1385–1396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y, Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, et al: Genetic and pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone regeneration. Biomaterials. 287:1216092022. View Article : Google Scholar | |
Fan M, Jiang WX, Wang AY, Peng J, Zhang L, Xu WJ and Lu SB: Combined effects of NEL-like type 1 gene and zoledronate in preventing collapse of the femoral head. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 35:553–560. 2013.In Chinese. PubMed/NCBI | |
Askarinam A, James AW, Zara JN, Goyal R, Corselli M, Pan A, Liang P, Chang L, Rackohn T, Stoker D, et al: Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A. 19:1386–1397. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Zhang X, Shen J, James AW, Chung CG, Hardy R, Li C, Girgius C, Zhang Y, Stoker D, et al: Brief Report: Human perivascular stem cells and nel-like protein-1 synergistically enhance spinal fusion in osteoporotic rats. Stem Cells. 33:3158–3163. 2015. View Article : Google Scholar : PubMed/NCBI | |
An HJ, Ko KR, Baek M, Jeong Y, Lee HH, Kim H, Kim DK, Lee SY and Lee S: Pro-Angiogenic and osteogenic effects of adipose tissue-derived pericytes synergistically enhanced by Nel-like Protein-1. Cells. 10:22442021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Péault B, Chen W, Li W, Corselli M, James AW, Lee M, Siu RK, Shen P, Zheng Z, et al: The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A. 17:2497–2509. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kwak JH, Zhang Y, Park J, Chen E, Shen J, Chawan C, Tanjaya J, Lee S, Zhang X, Wu BM, et al: Pharmacokinetics and osteogenic potential of PEGylated NELL-1 in vivo after systemic administration. Biomaterials. 57:73–83. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tanjaya J, Zhang Y, Lee S, Shi J, Chen E, Ang P, Zhang X, Tetradis S, Ting K, Wu B, et al: Efficacy of Intraperitoneal Administration of PEGylated NELL-1 for Bone Formation. Biores Open Access. 5:159–170. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Velasco O, Zhang X, Ting K, Soo C and Wu BM: Bioactivity and circulation time of PEGylated NELL-1 in mice and the potential for osteoporosis therapy. Biomaterials. 35:6614–6621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tanjaya J, Lord EL, Wang C, Zhang Y, Kim JK, Nguyen A, Baik L, Pan HC, Chen E, Kwak JH, et al: The Effects of Systemic Therapy of PEGylated NEL-Like Protein 1 (NELL-1) on Fracture Healing in Mice. Am J Pathol. 188:715–727. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pang S, Shen J, Liu Y, Chen F, Zheng Z, James AW, Hsu CY, Zhang H, Lee KS, Wang C, et al: Proliferation and osteogenic differentiation of mesenchymal stem cells induced by a short isoform of NELL-1. Stem Cells. 33:904–915. 2015. View Article : Google Scholar | |
Meyers CA, Sun Z, Chang L, Ding C, Lu A, Ting K, Pang S and James AW: Age dependent effects of NELL-1 isoforms on bone marrow stromal cells. J Orthop. 16:175–178. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li W, Lee M, Whang J, Siu RK, Zhang X, Liu C, Wu BM, Wang JC, Ting K and Soo C: Delivery of lyophilized Nell-1 in a rat spinal fusion model. Tissue Eng Part A. 16:2861–2870. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Hou Y, Park H and Lee M: Beta-tricalcium phosphate particles as a controlled release carrier of osteogenic proteins for bone tissue engineering. J Biomed Mater Res A. 100:1680–1686. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dong R, Park Y, Bohner M, Zhang X, Ting K, Soo C and Wu BM: Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles. Int J Pharm. 511:79–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
James AW, Chiang M, Asatrian G, Shen J, Goyal R, Chung CG, Chang L, Shrestha S, Turner AS, Seim HB III, et al: Vertebral Implantation of NELL-1 enhances bone formation in an osteoporotic sheep model. Tissue Eng Part A. 22:840–849. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song H, Zhang Y, Zhang Z, Xiong S, Ma X and Li Y: Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Int J Nanomedicine. 16:4321–4332. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee M, Li W, Siu RK, Whang J, Zhang X, Soo C, Ting K and Wu BM: Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 30:6094–6101. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee M, Siu RK, Ting K and Wu BM: Effect of Nell-1 delivery on chondrocyte proliferation and cartilaginous extracellular matrix deposition. Tissue Eng Part A. 16:1791–1800. 2010. View Article : Google Scholar | |
Zhu S, Zhang B, Man C, Ma Y and Hu J: NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle. Osteoarthritis Cartilage. 19:743–750. 2011. View Article : Google Scholar : PubMed/NCBI | |
Siu RK, Lu SS, Li W, Whang J, McNeill G, Zhang X, Wu BM, Turner AS, Seim HB III, Hoang P, et al: Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A. 17:1123–1135. 2011. View Article : Google Scholar : | |
Yuan W, James AW, Asatrian G, Shen J, Zara JN, Tian HJ, Siu RK, Zhang X, Wang JC and Dong J: NELL-1 based demineralized bone graft promotes rat spine fusion as compared to commercially available BMP-2 product. J Orthop Sci. 18:646–657. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zara JN, Siu RK, Lee M, Aghaloo T, Zhang X, Wu BM, Gertzman AA, Ting K and Soo C: Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plast Reconstr Surg. 127:580–587. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shen J, LaChaud G, Shrestha S, Asatrian G, Zhang X, Dry SM, Soo C, Ting K and James AW: NELL-1 expression in tumors of cartilage. J Orthop. 12(Suppl 2): S223–S229. 2015. View Article : Google Scholar | |
Shen J, LaChaud G, Khadarian K, Shrestha S, Zhang X, Soo C, Ting K, Dry SM and James AW: NELL-1 expression in benign and malignant bone tumors. Biochem Biophys Res Commun. 460:368–374. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Walder B, James AW, Soofer DE, Soo C, Ting K and Zhang X: NELL-1-dependent mineralisation of Saos-2 human osteosarcoma cells is mediated via c-Jun N-terminal kinase pathway activation. Int Orthop. 36:2181–2187. 2012. View Article : Google Scholar : PubMed/NCBI | |
Duan C and Townley HE: Isolation of NELL 1 aptamers for rhabdomyosarcoma targeting. Bioengineering (Basel). 9:1742022. View Article : Google Scholar : PubMed/NCBI | |
Song D, Wang Q, Yan Z, Su M, Zhang H, Shi L, Fan Y, Zhang Q, Yang H, Zhang D and Liu Q: METTL3 promotes the progression of osteosarcoma through the N6-methyladenosine modification of MCAM via IGF2BP1. Biol Direct. 19:442024. View Article : Google Scholar : PubMed/NCBI | |
Shen J, LaChaud G, Khadarian K, Shrestha S, Zhang X, Soo C, Ting K, Dry SM and James AW: NELL-1 expression in benign and malignant bone tumors. Biochem Biophys Res Commun. 460:368–374. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Pan R and Wang Z: Multi-omics and single cell sequencing analyses reveal associations of mitophagy-related genes predicting clinical prognosis and immune infiltration characteristics in osteosarcoma. Mol Biotechnol. Sep 12–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Kular J, Tickner J, Chim SM and Xu J: An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 45:863–873. 2012. View Article : Google Scholar : PubMed/NCBI |