1
|
Burke JM, Masaquel A, Wang R, Hossain F,
Li J, Zhou SQ, Ng CD and Matasar M: Cost of disease progression in
diffuse large B-cell lymphoma after frontline treatment with
rituximab plus cyclophosphamide, doxorubicin, vincristine, and
prednisone. Clin Lymphoma Myeloma Leuk. 23:e393–e404. 2023.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Velikova G, Morden JP, Haviland JS, Emery
C, Barrett-Lee P, Earl H, Bloomfield D, Brunt AM, Canney P, Coleman
R, et al: Accelerated versus standard epirubicin followed by
cyclophosphamide, methotrexate, and fluorouracil or capecitabine as
adjuvant therapy for breast cancer (UK TACT2; CRUK/05/19): Quality
of life results from a multicentre, phase 3, open-label,
randomised, controlled trial. Lancet Oncol. 24:1359–1374. 2023.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Chen Y, Ai L, Zhang Y, Li X, Xu S, Yang W,
Jin J, Ma Y, Hu Z, Zhang Y, et al: The EZH2-H3K27me3 axis modulates
aberrant transcription and apoptosis in cyclophosphamide-induced
ovarian granulosa cell injury. Cell Death Discov. 9:4132023.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kang H, Fan W, Lei B, Tian Y and Zhang S:
The immunosuppression and immunoenhancement effects of
cyclophosphamide on normal mice. Immunol J. 34:308–312. 2018.
|
5
|
Zhang QH, Wu CF, Duan L and Yang JY:
Protective effects of total saponins from stem and leaf of Panax
ginseng against cyclophosphamide-induced genotoxicity and apoptosis
in mouse bone marrow cells and peripheral lymphocyte cells. Food
Chem Toxicol. 46:293–302. 2008. View Article : Google Scholar
|
6
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z,
Zhang L, Gao X, He X, Li X, Zhao D, et al: Prevention effect of
total ginsenosides and ginseng extract from Panax ginseng on
cyclophosphamide-induced immunosuppression in mice. Phytother Res.
37:3583–3601. 2023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhou R, He D, Xie J, Zhou Q, Zeng H, Li H
and Huang L: The synergistic effects of polysaccharides and
ginsenosides from American ginseng (Panax quinquefolius L.)
ameliorating cyclophosphamide-induced intestinal immune disorders
and gut barrier dysfunctions based on microbiome-metabolomics
analysis. Front Immunol. 12:6659012021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Viaud S, Saccheri F, Mignot G, Yamazaki T,
Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ,
et al: The intestinal microbiota modulates the anticancer immune
effects of cyclophosphamide. Science. 342:971–976. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Qi L, Wang C and Yuan C: Ginsenosides from
American ginseng: Chemical and pharmacological diversity.
Phytochemistry. 72:689–699. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Qu D, Huo XH, Li ZM, Hua M, Lu YS, Chen
JB, Li SS, Wen LK and Sun YS: Sediment formation and analysis of
the main chemical components of aqueous extracts from different
parts of ginseng roots. Food Chem. 379:1321462022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yance DR Jr and Sagar SM: Targeting
angiogenesis with integrative cancer therapies. Integr Cancer Ther.
5:9–29. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wan Y, Wang J, Xu JF, Tang F, Chen L, Tan
YZ, Rao CL, Ao H and Peng C: Panax ginseng and its ginsenosides:
potential candidates for the prevention and treatment of
chemotherapy-induced side effects. J Ginseng Res. 45:617–630. 2021.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jia L, Zhao Y and Liang XJ: Current
evaluation of the millennium phytomedicine-ginseng (II): Collected
chemical entities, modern pharmacology, and clinical applications
emanated from traditional Chinese medicine. Curr Med Chem.
16:2924–2942. 2009. View Article : Google Scholar
|
14
|
Cockburn DW and Koropatkin NM:
Polysaccharide degradation by the intestinal microbiota and its
influence on human health and disease. J Mol Biol. 428:3230–3252.
2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen H, Gao XJ, Li T, Jing WH, Han BL, Jia
YM, Hu N, Yan ZX, Li SL and Yan R: Ginseng polysaccharides enhanced
ginsenoside Rb1 and microbial metabolites exposure through
enhancing intestinal absorption and affecting gut microbial
metabolism. J Ethnopharmacol. 216:47–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Maiuolo J, Musolino V, Gliozzi M, Carresi
C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Macri
R, et al: Involvement of the intestinal microbiota in the
appearance of multiple sclerosis: Aloe vera and citrus bergamia as
potential candidates for intestinal health. Nutrients. 14:27112022.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Li S, Han W, He Q, Zhang W and Zhang Y:
Relationship between intestinal microflora and hepatocellular
cancer based on gut-liver axis theory. Contrast Media Mol Imaging.
2022:65336282022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Marchesi JR, Adams DH, Fava F, Hermes GD,
Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM,
et al: The gut microbiota and host health: A new clinical frontier.
Gut. 65:330–339. 2016. View Article : Google Scholar
|
19
|
Yang Z and Ji G: Fusobacterium
nucleatum-positive colorectal cancer. Oncol Lett. 18:975–982.
2019.PubMed/NCBI
|
20
|
Kostic AD, Gevers D, Pedamallu CS, Michaud
M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et
al: Genomic analysis identifies association of Fusobacterium with
colorectal carcinoma. Genome Res. 22:292–298. 2012. View Article : Google Scholar :
|
21
|
Kim YK and Yum KS: Effects of red ginseng
extract on gut microbial distribution. J Ginseng Res. 46:91–103.
2022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ding Q, Feng SW, Xu GH, Chen YY and Shi
YY: Effects of total ginsenosides from Panax ginseng stems and
leaves on gut microbiota and short-chain fatty acids metabolism in
acute lung injury mice. Zhongguo Zhong Yao Za Zhi. 48:1319–1329.
2023.In Chinese. PubMed/NCBI
|
23
|
Wan L, Qian C, Yang C, Peng S, Dong G,
Cheng P, Zong G, Han H, Shao M, Gong G, et al: Ginseng
polysaccharides ameliorate ulcerative colitis via regulating gut
microbiota and tryptophan metabolism. Int J Biol Macromol.
265:1308222024. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mazur L, Augustynek A, Deptała A, Halicka
HD and Bedner E: Effects of WR-2721 and cyclophosphamide on the
cell cycle phase specificity of apoptosis in mouse bone marrow.
Anticancer Drugs. 13:751–758. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang JB, Du MW and Zheng Y: Effect of
ginsenoside Rg1 on hematopoietic stem cells in treating aplastic
anemia in mice via MAPK pathway. World J Stem Cells. 16:591–603.
2024. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Y, Zhang L, Zhou W, Zhang X, Su W,
Wei X and Zhang H: Protective effect of various types of ginseng
extracts on blood deficiency induced by cyclophosphamide in rat.
Lishizhen Med Mater Med Res. 33:2861–2867. 2022.In Chinese.
|
27
|
Duan Y, Huang J, Sun M, Jiang Y, Wang S,
Wang L, Yu N, Peng D, Wang Y, Chen W and Zhang Y: Poria cocos
polysaccharide improves intestinal barrier function and maintains
intestinal homeostasis in mice. Int J Biol Macromol.
249:1259532023. View Article : Google Scholar : PubMed/NCBI
|
28
|
Boonlert W, Benya-Aphikul H, Umka Welbat J
and Rodsiri R: Ginseng extract G115 attenuates ethanol-induced
depression in mice by increasing brain BDNF levels. Nutrients.
9:9312017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao
ZJ, Liu SX, Li SS and Sun YS: A comparative study on the effects of
different parts of Panax ginseng on the immune activity of
cyclophosphamide-induced immunosuppressed mice. Molecules.
24:10962019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Parasuraman S, Raveendran R and Kesavan R:
Blood sample collection in small laboratory animals. J Pharmacol
Pharmacother. 1:87–93. 2010. View Article : Google Scholar
|
31
|
Zhao H, Lyu Y, Zhai R, Sun G and Ding X:
Metformin mitigates sepsis-related neuroinflammation via modulating
gut microbiota and metabolites. Front Immunol. 13:7973122022.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Young MD, Wakefield MJ, Smyth GK and
Oshlack A: Gene ontology analysis for RNA-seq: Accounting for
selection bias. Genome Biol. 11:R142010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mao X, Cai T, Olyarchuk JG and Wei L:
Automated genome annotation and pathway identification using the
KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics.
21:3787–3793. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
35
|
Cao H, Wei W, Xu R and Cui X: Ginsenoside
Rg1 can restore hematopoietic function by inhibiting Bax
translocation-mediated mitochondrial apoptosis in aplastic anemia.
Sci Rep. 11:127422021. View Article : Google Scholar : PubMed/NCBI
|
36
|
de Roo JJD and Staal FJT: Cell signaling
pathway reporters in adult hematopoietic stem cells. Cells.
9:22642020. View Article : Google Scholar :
|
37
|
Montazersaheb S, Ehsani A, Fathi E and
Farahzadi R: Cellular and molecular mechanisms involved in
hematopoietic stem cell aging as a clinical prospect. Oxid Med Cell
Longev. 2022:27134832022. View Article : Google Scholar : PubMed/NCBI
|
38
|
An X and Chen L: Flow cytometry (FCM)
analysis and fluorescence-activated cell sorting (FACS) of
erythroid cells. Methods Mol Biol. 1698:153–174. 2018. View Article : Google Scholar
|
39
|
Asari S, Sakamoto A, Okada S, Ohkubo Y,
Arima M, Hatano M, Kuroda Y and Tokuhisa T: Abnormal erythroid
differentiation in neonatal bcl-6-deficient mice. Exp Hematol.
33:26–34. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kurtin S: Myeloid toxicity of cancer
treatment. J Adv Pract Oncol. 3:209–224. 2012.PubMed/NCBI
|
41
|
Huang J, Liu D, Wang Y, Liu L, Li J, Yuan
J, Jiang Z, Jiang Z, Hsiao WW, Liu H, et al: Ginseng
polysaccharides alter the gut microbiota and kynurenine/tryptophan
ratio, potentiating the antitumour effect of antiprogrammed cell
death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1)
immunotherapy. Gut. 71:734–745. 2022. View Article : Google Scholar
|
42
|
O'Hara AM, O'Regan P, Fanning A, O'Mahony
C, Macsharry J, Lyons A, Bienenstock J, O'Mahony L and Shanahan F:
Functional modulation of human intestinal epithelial cell responses
by Bifidobacterium infantis and Lactobacillus salivarius.
Immunology. 118:202–215. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Christensen HR, Frøkiaer H and Pestka JJ:
Lactobacilli differentially modulate expression of cytokines and
maturation surface markers in murine dendritic cells. J Immunol.
168:171–178. 2002. View Article : Google Scholar
|
44
|
Li S, Huo X, Qi Y, Ren D, Li Z, Qu D and
Sun Y: The protective effects of Ginseng polysaccharides and their
effective subfraction against dextran sodium sulfate-induced
colitis. Foods. 11:9802022.
|
45
|
Yoshida N, Emoto T, Yamashita T, Watanabe
H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N, et
al: Bacteroides vulgatus and Bacteroides dorei reduce gut microbial
lipopolysaccharide production and inhibit atherosclerosis.
Circulation. 138:2486–2498. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Song L, Huang Y, Liu G, Li X, Xiao Y, Liu
C, Zhang Y, Li J, Xu J, Lu S and Ren Z: A novel immunobiotics
Bacteroides dorei ameliorates influenza virus infection in mice.
Front Immunol. 12:8288872022. View Article : Google Scholar : PubMed/NCBI
|
47
|
Park NJ, Yu S, Kim DH, Yun EJ and Kim KH:
Characterization of BpGH16A of Bacteroides plebeius, a key enzyme
initiating the depolymerization of agarose in the human gut. Appl
Microbiol Biotechnol. 105:617–625. 2021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Pei T, Zhu D, Yang S, Hu R, Wang F, Zhang
J, Yan S, Ju L, He Z, Han Z, et al: Bacteroides plebeius improves
muscle wasting in chronic kidney disease by modulating the
gut-renal muscle axis. J Cell Mol Med. 26:6066–6078. 2022.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Tett A, Pasolli E, Masetti G, Ercolini D
and Segata N: Prevotella diversity, niches and interactions with
the human host. Nat Rev Microbiol. 19:585–599. 2021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kovatcheva-Datchary P, Nilsson A, Akrami
R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Björck I and
Bäckhed F: Dietary fiber-induced improvement in glucose metabolism
is associated with increased abundance of Prevotella. Cell Metab.
22:971–982. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Qiao S, Liu C, Sun L, Wang T, Dai H, Wang
K, Bao L, Li H, Wang W, Liu SJ and Liu H: Gut Parabacteroides
merdae protects against cardiovascular damage by enhancing
branched-chain amino acid catabolism. Nat Metab. 4:1271–1286. 2022.
View Article : Google Scholar : PubMed/NCBI
|
52
|
El-Serafi I, Abedi-Valugerdi M, Potácová
Z, Afsharian P, Mattsson J, Moshfegh A and Hassan M:
Cyclophosphamide alters the gene expression profile in patients
treated with high doses prior to stem cell transplantation. PLoS
One. 9:e866192014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kim SG, Lee AJ, Bae SH, Kim SM, Lee JH,
Kim MJ and Jang HB: Total extract of Korean red ginseng facilitates
human bone marrow hematopoietic colony formation in vitro. Blood
Res. 49:177–181. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sun C, Choi IY, Rovira Gonzalez YI,
Andersen P, Talbot CC Jr, Iyer SR, Lovering RM, Wagner KR and Lee
G: Duchenne muscular dystrophy hiPSC-derived myoblast drug screen
identifies compounds that ameliorate disease in mdx mice. JCI
Insight. 5:e1342872020.PubMed/NCBI
|
55
|
Kikushige Y, Yoshimoto G, Miyamoto T, Iino
T, Mori Y, Iwasaki H, Niiro H, Takenaka K, Nagafuji K, Harada M, et
al: Human Flt3 is expressed at the hematopoietic stem cell and the
granulocyte/macrophage progenitor stages to maintain cell survival.
J Immunol. 180:7358–7367. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Han J, Wang Y, Cai E, Zhang L, Zhao Y, Sun
N, Zheng X and Wang S: Study of the effects and mechanisms of
ginsenoside compound K on myelosuppression. J Agric Food Chem.
67:1402–1408. 2019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Tang YL, Zhou Y, Wang YP, Wang JW and Ding
JC: SIRT6/NF-κB signaling axis in ginsenoside Rg1-delayed
hematopoietic stem/progenitor cell senescence. Int J Clin Exp
Pathol. 8:5591–5596. 2015.
|
58
|
Jackson JT, O'Donnell K, Light A, Goh W,
Huntington ND, Tarlinton DM and McCormack MP: Hhex regulates murine
lymphoid progenitor survival independently of Stat5 and Cdkn2a. Eur
J Immunol. 50:959–971. 2020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Klaewsongkram J, Yang Y, Golech S, Katz J,
Kaestner KH and Weng NP: Krüppel-like factor 4 regulates B cell
number and activation-induced B cell proliferation. J Immunol.
179:4679–4684. 2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Feinberg MW, Wara AK, Cao Z, Lebedeva MA,
Rosenbauer F, Iwasaki H, Hirai H, Katz JP, Haspel RL, Gray S, et
al: The Kruppel-like factor KLF4 is a critical regulator of
monocyte differentiation. EMBO J. 26:4138–4148. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
Ficara F, Murphy MJ, Lin M and Cleary ML:
Pbx1 regulates self-renewal of long-term hematopoietic stem cells
by maintaining their quiescence. Cell Stem Cell. 2:484–496. 2008.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Voit RA and Sankaran VG: MECOM deficiency:
From bone marrow failure to impaired B-cell development. J Clin
Immunol. 43:1052–1066. 2023. View Article : Google Scholar : PubMed/NCBI
|
63
|
Matsushita K, Takeuchi O, Standley DM,
Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T,
Nakamura H and Akira S: Zc3h12a is an RNase essential for
controlling immune responses by regulating mRNA decay. Nature.
458:1185–1190. 2009. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wang X, Luo Y, Xiu W, Xu M and Ma Y:
Preparation and evaluation of sweet corn cob polysaccharide nano
emulsion. Sci Tech Food Ind. 43:124–133. 2022.
|
65
|
Tang P, Ren G, Zou H, Liu S, Zhang J, Ai
Z, Hu Y, Cui L, Nan B, Zhang Z and Wang Y: Ameliorative effect of
total ginsenosides from heat-treated fresh ginseng against
cyclophosphamide-induced liver injury in mice. Curr Res Food Sci.
8:1007342024. View Article : Google Scholar : PubMed/NCBI
|
66
|
Sun Y, Guo M, Feng Y, Zheng H, Lei P, Ma
X, Han X, Guan H and Hou D: Effect of ginseng polysaccharides on NK
cell cytotoxicity in immunosuppressed mice. Exp Ther Med.
12:3773–3777. 2016. View Article : Google Scholar
|
67
|
Zhou S, Xu J, Zhu H, Wu J, Xu JD, Yan R,
Li XY, Liu HH, Duan SM, Wang Z, et al: Gut microbiota-involved
mechanisms in enhancing systemic exposure of ginsenosides by
coexisting polysaccharides in ginseng decoction. Sci Rep.
6:224742016. View Article : Google Scholar : PubMed/NCBI
|
68
|
Li J, Li R, Li N, Zheng F, Dai Y, Ge Y,
Yue H and Yu S: Mechanism of antidiabetic and synergistic effects
of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat
model. J Pharm Biomed Anal. 158:451–460. 2018. View Article : Google Scholar : PubMed/NCBI
|
69
|
Wang HY, Wang C, Guo SC, Chen ZC, Peng ZT,
Duan R, Dong TTX and Tsim KWK: Polysaccharide deriving from
Ophiopogonis Radix promotes metabolism of ginsenosides in the
present of human gut microbiota based on UPLC-MS/MS assay. J Pharm
Biomed Anal. 175:1127792019. View Article : Google Scholar : PubMed/NCBI
|
70
|
Gbyli R, Song Y and Halene S: Humanized
mice as preclinical models for myeloid malignancies. Biochem
Pharmacol. 174:1137942020. View Article : Google Scholar : PubMed/NCBI
|
71
|
Cackowski FC and Taichman RS: Parallels
between hematopoietic stem cell and prostate cancer disseminated
tumor cell regulation. Bone. 119:82–86. 2019. View Article : Google Scholar
|
72
|
Steenbrugge J, De Jaeghere EA, Meyer E,
Denys H and De Wever O: Splenic hematopoietic and stromal cells in
cancer progression. Cancer Res. 81:27–34. 2021. View Article : Google Scholar
|