1
|
Khaltourina D, Matveyev Y, Alekseev A,
Cortese F and Ioviţă A: Aging fits the disease criteria of the
international classification of diseases. Mech Ageing Dev.
189:1112302020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hakimizadeh E, Tadayon S, Zamanian MY,
Soltani A, Giménez-Llort L, Hassanipour M and Fatemi I:
Gemfibrozil, a lipid-lowering drug, improves hepatorenal damages in
a mouse model of aging. Fundam Clin Pharmacol. 37:599–605. 2023.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hakimizadeh E, Zamanian MY, Borisov VV,
Giménez-Llort L, Ehsani V, Kaeidi A, Hassanshahi J, Khajehasani F,
Movahedinia S and Fatemi I: Gemfibrozil, a lipid-lowering drug,
reduces anxiety, enhances memory, and improves brain oxidative
stress in d-galactose-induced aging mice. Fundam Clin Pharmacol.
36:501–508. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cai Y, Song W, Li J, Jing Y, Liang C,
Zhang L, Zhang X, Zhang W, Liu B, An Y, et al: The landscape of
aging. Sci China Life Sci. 65:2354–2454. 2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tchkonia T, Palmer AK and Kirkland JL: New
horizons: Novel approaches to enhance healthspan through targeting
cellular senescence and related aging mechanisms. J Clin Endocrinol
Metab. 106:e1481–e1487. 2021. View Article : Google Scholar :
|
6
|
Rudolph KL: Stem cell aging. Mech Ageing
Dev. 193:1113942021. View Article : Google Scholar
|
7
|
Liu B, Qu J, Zhang W, Izpisua Belmonte JC
and Liu GH: A stem cell aging framework, from mechanisms to
interventions. Cell Rep. 41:1114512022. View Article : Google Scholar : PubMed/NCBI
|
8
|
López-Otín C, Pietrocola F, Roiz-Valle D,
Galluzzi L and Kroemer G: Meta-hallmarks of aging and cancer. Cell
Metab. 35:12–35. 2023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Plakhova N, Panagopoulos V, Vandyke K,
Zannettino ACW and Mrozik KM: Mesenchymal stromal cell senescence
in haematological malignancies. Cancer Metastasis Rev. 42:277–296.
2023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Aguilar-Navarro AG, Meza-León B,
Gratzinger D, Juárez-Aguilar FG, Chang Q, Ornatsky O, Tsui H,
Esquivel-Gómez R, Hernández-Ramírez A, Xie SZ, et al: Human aging
alters the spatial organization between CD34+ hematopoietic cells
and adipocytes in bone marrow. Stem Cell Reports. 15:317–325. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Young K, Eudy E, Bell R, Loberg MA,
Stearns T, Sharma D, Velten L, Haas S, Filippi MD and Trowbridge
JJ: Decline in IGF1 in the bone marrow microenvironment initiates
hematopoietic stem cell aging. Cell Stem Cell. 28:1473–1482.e7.
2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu
C, Zhao Z, Li L and Li B: Mesenchymal stem/stromal cell senescence:
Hallmarks, mechanisms, and combating strategies. Stem Cells Transl
Med. 11:356–371. 2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Al-Azab M, Safi M, Idiiatullina E,
Al-Shaebi F and Zaky MY: Aging of mesenchymal stem cell: Machinery,
markers, and strategies of fighting. Cell Mol Biol Lett. 27:692022.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu Y, Ge J, Huang C, Liu H and Jiang H:
Application of mesenchymal stem cell therapy for aging frailty:
From mechanisms to therapeutics. Theranostics. 11:5675–5685. 2021.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Burnham AJ, Daley-Bauer LP and Horwitz EM:
Mesenchymal stromal cells in hematopoietic cell transplantation.
Blood Adv. 4:5877–5887. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ambrosi TH and Chan CKF: A seed-and-soil
theory for blood ageing. Nat Cell Biol. 25:9–11. 2023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shannon K and Link DC: Soil and Seed:
Coconspirators in therapy-induced myeloid neoplasms. Blood Cancer
Discov. 1:10–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Deniz IA, Karbanová J, Wobus M, Bornhäuser
M, Wimberger P, Kuhlmann JD and Corbeil D: Mesenchymal stromal
cell-associated migrasomes: A new source of chemoattractant for
cells of hematopoietic origin. Cell Commun Signal. 21:362023.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Nachmias B, Zimran E and Avni B:
Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J
Haematol. 199:175–189. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Young KA, Telpoukhovskaia MA, Hofmann J,
Mistry JJ, Kokkaliaris KD and Trowbridge JJ: Variation in
mesenchymal KITL/SCF and IGF1 expression in middle age underlies
steady-state hematopoietic stem cell aging. Blood. 144:378–391.
2024. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou Y, Cai X, Zhang X, Dong Y, Pan X, Lai
M, Zhang Y, Chen Y, Li X, Li X, et al: Mesenchymal stem/stromal
cells from human pluripotent stem cell-derived brain organoid
enhance the ex vivo expansion and maintenance of hematopoietic
stem/progenitor cells. Stem Cell Res Ther. 15:682024. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tang A, Strat AN, Rahman M, Zhang H, Bao
W, Liu Y, Shi D, An X, Manwani D, Shi P, et al: Murine bone marrow
mesenchymal stromal cells have reduced hematopoietic maintenance
ability in sickle cell disease. Blood. 138:2570–2582. 2021.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rossi M, Meggendorfer M, Zampini M,
Tettamanti M, Riva E, Travaglino E, Bersanelli M, Mandelli S,
Antonella Galbussera A, Mosca E, et al: Clinical relevance of
clonal hematopoiesis in persons aged ≥80 years. Blood.
138:2093–2105. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stauder R, Valent P and Theurl I: Anemia
at older age: Etiologies, clinical implications, and management.
Blood. 131:505–514. 2018. View Article : Google Scholar
|
25
|
Colom Díaz PA, Mistry JJ and Trowbridge
JJ: Hematopoietic stem cell aging and leukemia transformation.
Blood. 142:533–542. 2023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J and
Gao B: Consequences of aging on bone. Aging Dis. 15:2417–2452.
2023.PubMed/NCBI
|
27
|
Kumar N, Saraber P, Ding Z and Kusumbe AP:
Diversity of vascular niches in bones and joints during
homeostasis, ageing, and diseases. Front Immunol. 12:7982112021.
View Article : Google Scholar
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Chen Q, Shou P, Zheng C, Jiang M, Cao G,
Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of
mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death
Differ. 23:1128–1139. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Redondo J, Bailey S, Kemp KC, Scolding NJ
and Rice CM: The bone marrow microenvironment in immune-mediated
inflammatory diseases: Implications for mesenchymal stromal
cell-based therapies. Stem Cells Transl Med. 13:219–229. 2024.
View Article : Google Scholar :
|
31
|
Tan L, Liu X, Dou H and Hou Y:
Characteristics and regulation of mesenchymal stem cell plasticity
by the microenvironment-specific factors involved in the regulation
of MSC plasticity. Genes Dis. 9:296–309. 2020. View Article : Google Scholar
|
32
|
Xie Y, Tang C, Huang Z, Zhou S, Yang Y,
Yin Z, Heng BC, Chen W, Chen X and Shen W: Extracellular matrix
remodeling in stem cell culture: A potential target for regulating
stem cell function. Tissue Eng Part B Rev. 28:542–554. 2022.
View Article : Google Scholar
|
33
|
Samal JRK, Rangasami VK, Samanta S,
Varghese OP and Oommen OP: Discrepancies on the role of oxygen
gradient and culture condition on mesenchymal stem cell fate. Adv
Healthc Mater. 10:e20020582021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kann AP, Hung M and Krauss RS: Cell-cell
contact and signaling in the muscle stem cell niche. Curr Opin Cell
Biol. 73:78–83. 2021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Le Saux G, Wu MC, Toledo E, Chen YQ, Fan
YJ, Kuo JC and Schvartzman M: Cell-cell adhesion-driven contact
guidance and its effect on human mesenchymal stem cell
differentiation. ACS Appl Mater Interfaces. 12:22399–22409. 2020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang X, Huang R and Zhang X and Zhang X:
Current status and prospects of hematopoietic stem cell
transplantation in China. Chin Med J (Engl). 135:1394–1403. 2022.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chang YJ, Pei XY and Huang XJ:
Haematopoietic stem-cell transplantation in China in the era of
targeted therapies: Current advances, challenges, and future
directions. Lancet Haematol. 9:e919–e929. 2022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li T, Luo C, Zhang J, Wei L, Sun W, Xie Q,
Liu Y, Zhao Y, Xu S and Wang L: Efficacy and safety of mesenchymal
stem cells co-infusion in allogeneic hematopoietic stem cell
transplantation: A systematic review and meta-analysis. Stem Cell
Res Ther. 12:2462021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Katzerke C, Schaffrath J, Lützkendorf J,
Janssen M, Merbach AK, Nerger K, Binder M, Baum C, Lauer K, Rohde
C, et al: Reduced proliferation of bone marrow MSC after allogeneic
stem cell transplantation is associated with clinical outcome.
Blood Adv. 7:2811–2824. 2023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Comazzetto S, Shen B and Morrison SJ:
Niches that regulate stem cells and hematopoiesis in adult bone
marrow. Dev Cell. 56:1848–1860. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lotfy A, AboQuella NM and Wang H:
Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical
trials. Stem Cell Res Ther. 14:662023. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He
L, Han L and Yuan Z: Targeted therapy for inflammatory diseases
with mesenchymal stem cells and their derived exosomes: From basic
to clinics. Int J Nanomedicine. 17:1757–1781. 2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Regmi S, Raut PK, Pathak S, Shrestha P,
Park PH and Jeong JH: Enhanced viability and function of
mesenchymal stromal cell spheroids is mediated via autophagy
induction. Autophagy. 17:2991–3010. 2021. View Article : Google Scholar :
|
44
|
Song N, Scholtemeijer M and Shah K:
Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic
potential. Trends Pharmacol Sci. 41:653–664. 2020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL,
Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, et
al: Stem cell-based therapy for human diseases. Signal Transduct
Target Ther. 7:2722022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tsiapalis D and O'Driscoll L: Mesenchymal
stem cell derived extracellular vesicles for tissue engineering and
regenerative medicine applications. Cells. 9:9912020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yang X, Chen D, Long H and Zhu B: The
mechanisms of pathological extramedullary hematopoiesis in
diseases. Cell Mol Life Sci. 77:2723–2738. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sanmartin MC, Borzone FR, Giorello MB,
Pacienza N, Yannarelli G and Chasseing NA: Bone marrow/bone
pre-metastatic niche for breast cancer cells colonization: The role
of mesenchymal stromal cells. Crit Rev Oncol Hematol.
164:1034162021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Massaro F, Corrillon F, Stamatopoulos B,
Dubois N, Ruer A, Meuleman N, Bron D and Lagneaux L: Age-related
changes in human bone marrow mesenchymal stromal cells: Morphology,
gene expression profile, immunomodulatory activity and miRNA
expression. Front Immunol. 14:12675502023. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kwack KH, Zhang L, Kramer ED, Thiyagarajan
R, Lamb NA, Arao Y, Bard JE, Seldeen KL, Troen BR, Blackshear PJ,
et al: Tristetraprolin limits age-related expansion of
myeloid-derived suppressor cells. Front Immunol. 13:10021632022.
View Article : Google Scholar : PubMed/NCBI
|
51
|
da Silva Gonçalves CE and Fock RA:
Semaphorins and the bone marrow microenvironment: New candidates
that influence the hematopoietic system. Cytokine Growth Factor
Rev. 76:22–29. 2024. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kokkaliaris KD and Scadden DT: Cell
interactions in the bone marrow microenvironment affecting myeloid
malignancies. Blood Adv. 4:3795–3803. 2020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hofmann J and Kokkaliaris KD: Bone marrow
niches for hematopoietic stem cells: Life span dynamics and
adaptation to acute stress. Blood. 144:21–34. 2024. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mohseni R, Mahdavi Sharif P, Behfar M,
Modaresi MR, Shirzadi R, Mardani M, Jafari L, Jafari F, Nikfetrat Z
and Hamidieh AA: Evaluation of safety and efficacy of allogeneic
adipose tissue-derived mesenchymal stem cells in pediatric
bronchiolitis obliterans syndrome (BoS) after allogeneic
hematopoietic stem cell transplantation (allo-HSCT). Stem Cell Res
Ther. 14:2562023. View Article : Google Scholar : PubMed/NCBI
|
55
|
Si YC, Li Q, Xie CE, Niu X, Xia XH and Yu
CY: Chinese herbs and their active ingredients for activating xue
(blood) promote the proliferation and differentiation of neural
stem cells and mesenchymal stem cells. Chin Med. 9:132014.
View Article : Google Scholar
|
56
|
Wang Z, Wang L, Jiang R, Li C, Chen X,
Xiao H, Hou J, Hu L, Huang C and Wang Y: Ginsenoside Rg1 prevents
bone marrow mesenchymal stem cell senescence via NRF2 and PI3K/Akt
signaling. Free Radic Biol Med. 174:182–194. 2021. View Article : Google Scholar : PubMed/NCBI
|