Role of solute carrier transporters in ovarian cancer (Review)
- Authors:
- Barbara Quaresima
- Stefania Scicchitano
- Maria Concetta Faniello
- Maria Mesuraca
-
Affiliations: Department of Experimental and Clinical Medicine, ‘Magna Graecia’ University of Catanzaro, I-88100 Catanzaro, Italy - Published online on: November 27, 2024 https://doi.org/10.3892/ijmm.2024.5465
- Article Number: 24
-
Copyright: © Quaresima et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM and Superti-Furga G: A call for systematic research on solute carriers. Cell. 162:478–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H and Bruford EA: The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 447:465–468. 2004. View Article : Google Scholar | |
Xia R, Peng HF, Zhang X and Zhang HS: Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol. 260(Pt 2): 1296462024. View Article : Google Scholar : PubMed/NCBI | |
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA and Kim SE: Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene. 42:711–724. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Yee SW, Kim RB and Giacomini KM: SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 14:543–560. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schlessinger A, Zatorski N, Hutchinson K and Colas C: Targeting SLC transporters: Small molecules as modulators and therapeutic opportunities. Trends Biochem Sci. 48:801–814. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dvorak V and Superti-Furga G: Structural and functional annotation of solute carrier transporters: Implication for drug discovery. Expert Opin Drug Discov. 18:1099–1115. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Chi X, Huang B, Ye F, Zhou Q and Huang J: Rational exploration of fold atlas for human solute carrier proteins. Structure. 30:1321–1330.e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
Perland E and Fredriksson R: Classification systems of secondary active transporters. Trends Pharmacol Sci. 38:305–315. 2017. View Article : Google Scholar | |
Nishimura M and Naito S: Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 23:22–44. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y, Zhao L, Serbulea V, Onengut-Gumuscu S, Leitinger N, Kucenas S, et al: Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature. 563:714–718. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Hagan S, Wright Muelas M, Day PJ, Lundberg E and Kell DB: GeneGini: Assessment via the Gini Coefficient of Reference 'Housekeeping' genes and diverse human transporter expression profiles. Cell Syst. 6:230–244.e1. 2018. View Article : Google Scholar | |
Li J, Li J and Jiang W: Effects of different surgical extents on prognosis of patients with malignant ovarian sex cord-stromal tumors: A retrospective cohort study. Sci Rep. 14:226302024. View Article : Google Scholar : PubMed/NCBI | |
Kostov S, Watrowski R, Kornovski Y, Dzhenkov D, Slavchev S, Ivanova Y and Yordanov A: Hereditary gynecologic cancer syndromes-A narrative review. Onco Targets Ther. 15:381–405. 2022. View Article : Google Scholar : | |
González-Martín A, Harter P, Leary A, Lorusso D, Miller RE, Pothuri B, Ray-Coquard I, Tan DSP, Bellet E, Oaknin A, et al: Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 34:833–848. 2023. View Article : Google Scholar : PubMed/NCBI | |
Quaresima B, Romeo F, Faniello MC, Di Sanzo M, Liu CG, Lavecchia A, Taccioli C, Gaudio E, Baudi F, Trapasso F, et al: BRCA1 5083del19 mutant allele selectively up-regulates periostin expression in vitro and in vivo. Clin Cancer Res. 14:6797–6803. 2008. View Article : Google Scholar : PubMed/NCBI | |
Crugliano T, Quaresima B, Gaspari M, Faniello MC, Romeo F, Baudi F, Cuda G, Costanzo F and Venuta S: Specific changes in the proteomic pattern produced by the BRCA1-Ser1841Asn missense mutation. Int J Biochem Cell Biol. 39:220–226. 2007. View Article : Google Scholar | |
Wei X, Sun L, Slade E, Fierheller CT, Oxley S, Kalra A, Sia J, Sideris M, McCluggage WG, Bromham N, et al: Cost-Effectiveness of Gene-Specific Prevention Strategies for Ovarian and Breast Cancer. JAMA Netw Open. 7:e23553242024. View Article : Google Scholar : PubMed/NCBI | |
Hanson H, Kulkarni A, Loong L, Kavanaugh G, Torr B, Allen S, Ahmed M, Antoniou AC, Cleaver R, Dabir T, et al: UK consensus recommendations for clinical management of cancer risk for women with germline pathogenic variants in cancer predisposition genes: RAD51C, RAD51D, BRIP1 and PALB2. J Med Genet. 60:417–429. 2023. View Article : Google Scholar | |
Scicchitano S, Faniello MC and Mesuraca M: Zinc Finger 521 Modulates the Nrf2-notch signaling pathway in human ovarian carcinoma. Int J Mol Sci. 24:147552023. View Article : Google Scholar : PubMed/NCBI | |
Scicchitano S, Montalcini Y, Lucchino V, Melocchi V, Gigantino V, Chiarella E, Bianchi F, Weisz A and Mesuraca M: Enhanced ZNF521 expression induces an aggressive phenotype in human ovarian carcinoma cell lines. PLoS One. 17:e02747852022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, He Z, Yang S, Chen C, Xiong W, He Y and Liu S: RUNX1 knockdown induced apoptosis and impaired EMT in high-grade serous ovarian cancer cells. J Transl Med. 21:8862023. View Article : Google Scholar : PubMed/NCBI | |
Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, Le Saux O and Ray-Coquard I: BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: State of the art and forthcoming challenges. Front Oncol. 14:13544272024. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H and Zou D: Drug resistance in ovarian cancer: From mechanism to clinical trial. Mol Cancer. 23:662024. View Article : Google Scholar : PubMed/NCBI | |
Marjamaa A, Gibbs B, Kotrba C and Masamha CP: The role and impact of alternative polyadenylation and miRNA regulation on the expression of the multidrug resistance-associated protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep. 13:174762023. View Article : Google Scholar : PubMed/NCBI | |
Elsnerova K, Bartakova A, Tihlarik J, Bouda J, Rob L, Skapa P, Hruda M, Gut I, Mohelnikova-Duchonova B, Soucek P and Vaclavikova R: Gene expression profiling reveals novel candidate markers of ovarian carcinoma intraperitoneal metastasis. J Cancer. 8:3598–3606. 2017. View Article : Google Scholar : PubMed/NCBI | |
Teng QX, Lei ZN, Wang JQ, Yang Y, Wu ZX, Acharekar ND, Zhang W, Yoganathan S, Pan Y, Wurpel J, et al: Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib a poly (ADP-Ribose) polymerase inhibitor. Drug Resist Updat. 73:1010282024. View Article : Google Scholar | |
Sniegowski T, Korac K, Bhutia YD and Ganapathy V: SLC6A14 and SLC38A5 Drive the Glutaminolysis and Serine-Glycine-One-Carbon Pathways in Cancer. Pharmaceuticals. 14:2162021. View Article : Google Scholar : PubMed/NCBI | |
Chiarella E, Aloisio A, Scicchitano S, Todoerti K, Cosentino EG, Lico D, Neri A, Amodio N, Bond HM and Mesuraca M: ZNF521 Enhances MLL-AF9-Dependent hematopoietic stem cell transformation in acute myeloid leukemias by altering the gene expression landscape. Int J Mol Sci. 22:108142021. View Article : Google Scholar : PubMed/NCBI | |
Bharadwaj R, Jaiswal S, Velarde de la Cruz EE and Thakare RP: Targeting solute carrier transporters (SLCs) as a therapeutic target in different cancers. Diseases. 12:632024. View Article : Google Scholar : PubMed/NCBI | |
Kaira K, Nakamura K, Hirakawa T, Imai H, Tominaga H, Oriuchi N, Nagamori S, Kanai Y, Tsukamoto N, Oyama T, et al: Prognostic significance of L-type amino acid transporter 1 (LAT1) expression in patients with ovarian tumors. Am J Transl Res. 7:1161–1171. 2015.PubMed/NCBI | |
Guo H, Xu Y, Wang F, Shen Z, Tuo X, Qian H, Wang H and Wang K: Clinical associations between ASCT2 and p-mTOR in the pathogenesis and prognosis of epithelial ovarian cancer. Oncol Rep. 40:3725–3733. 2018.PubMed/NCBI | |
Huang X, Luo Y and Li X: Circ_0072995 promotes ovarian cancer progression through regulating miR-122-5p/SLC1A5 Axis. Biochem Genet. 60:153–172. 2022. View Article : Google Scholar | |
Ma H, Qu S, Zhai Y and Yang X: circ_0025033 promotes ovarian cancer development via regulating the hsa_miR-370-3p/SLC1A5 axis. Cell Mol Biol Lett. 27:942022. View Article : Google Scholar : PubMed/NCBI | |
Villagomez FR, Lang J, Rosario FJ, Nunez-Avellaneda D, Webb P, Neville M, Woodruff ER and Bitler BG: Claudin-4 Modulates Autophagy via SLC1A5/LAT1 as a Mechanism to Regulate Micronuclei. Cancer Res Commun. 4:1625–1642. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Shafaq-Zadah M, Pawling J, Hesketh GG, Dransart E, Pacholczyk K, Longo J, Gingras AC, Penn LZ, Johannes L and Dennis JW: SLC3A2 N-glycosylation and Golgi remodeling regulate SLC7A amino acid exchangers and stress mitigation. J Biol Chem. 299:1054162023. View Article : Google Scholar : PubMed/NCBI | |
Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F and Rotin D: LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 6:72502015. View Article : Google Scholar : PubMed/NCBI | |
Park E, Kim H, Yoon S and Jang B: The role of CD98 heavy chain in cancer development. Histol Histopathol. 16:187492024. | |
He J, Liu D, Liu M, Tang R and Zhang D: Characterizing the role of SLC3A2 in the molecular landscape and immune microenvironment across human tumors. Front Mol Biosci. 9:9614102022. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang P and Wang Z: ZEB1 Promotes Chemoresistance to Cisplatin in Ovarian Cancer Cells by Suppressing SLC3A2. Chemotherapy. 63:262–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou XY, Li JY, Tan JT, HuangLi YL, Nie XC and Xia P: Clinical significance of the CD98hc-CD147 complex in ovarian cancer: A bioinformatics analysis. J Obstet Gynaecol. 43:21880852023. View Article : Google Scholar : PubMed/NCBI | |
Qin L, Li T and Liu Y: High SLC4A11 expression is an independent predictor for poor overall survival in grade 3/4 serous ovarian cancer. PLoS One. 12:e01873852017. View Article : Google Scholar : PubMed/NCBI | |
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, et al: Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73:1524–1535. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B and Gillies RJ: Acid-mediated tumor invasion: A multidisciplinary study. Cancer Res. 66:5216–5223. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sanhueza C, Araos J, Naranjo L, Toledo F, Beltrán AR, Ramírez MA, Gutiérrez J, Pardo F, Leiva A and Sobrevia L: Sodium/proton exchanger isoform 1 regulates intracellular pH and cell proliferation in human ovarian cancer. Biochim Biophys Acta Mol Basis Dis. 1863:81–91. 2017. View Article : Google Scholar | |
Gong W, Chen Y and Zhang Y: Prognostic and clinical significance of Solute Carrier Family 7 Member 1 in ovarian cancer. Transl Cancer Res. 10:602–612. 2021. View Article : Google Scholar | |
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S and Kumar AP: Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab. 84:1019522024. View Article : Google Scholar : PubMed/NCBI | |
You S, Zhu X, Yang Y, Du X, Song K, Zheng Q, Zeng P and Yao Q: SLC7A1 overexpression is involved in energy metabolism reprogramming to induce tumor progression in epithelial ovarian cancer and is associated with immune-infiltrating cells. J Oncol. 2022:58648262022. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Bi F, Liu Z and Yang Q: SLC7A2 serves as a potential biomarker and therapeutic target for ovarian cancer. Aging (Albany NY). 12:13281–13296. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jeckelmann JM, Zaugg J, Morozova V, Müller J, Kantipudi S, Schroeder M, Graff J, Albrecht C, Altmann KH, Gertsch J and Fotiadis D: Structure, Function and Pharmacology of SLC7 Family Members and Homologues. Chimia (Aarau). 76:1011–1018. 2022. View Article : Google Scholar | |
Jiang S, Zou J, Dong J, Shi H, Chen J, Li Y, Duan X and Li W: Lower SLC7A2 expression is associated with enhanced multidrug resistance, less immune infiltrates and worse prognosis of NSCLC. Cell Commun Signal. 21:92023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Shen S, Qin J, Fei W, Fan F, Gu J, Shen T, Zhang T and Cheng X: High co-expression of SLC7A11 and GPX4 as a predictor of platinum resistance and poor prognosis in patients with epithelial ovarian cancer. BJOG. 129(Suppl 2): S40–S49. 2022. View Article : Google Scholar | |
Fantone S, Piani F, Olivieri F, Rippo MR, Sirico A, Di Simone N, Marzioni D and Tossetta G: Role of SLC7A11/xCT in Ovarian Cancer. Int J Mol Sci. 25:5872024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dong K, Jia X, Du S, Wang D, Wang L, Qu H, Zhu S, Wang Y, Wang Z, et al: A novel extrachromosomal circular DNA related genes signature for overall survival prediction in patients with ovarian cancer. BMC Med Genomics. 16:1402023. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Ross DD, Arakawa H, Ganapathy V, Tamai I and Nakanishi T: Impact of system L amino acid transporter 1 (LAT1) on proliferation of human ovarian cancer cells: A possible target for combination therapy with anti-proliferative aminopeptidase inhibitors. Biochem Pharmacol. 80:811–818. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaji M, Kabir-Salmani M, Anzai N, Jin CJ, Akimoto Y, Horita A, Sakamoto A, Kanai Y, Sakurai H and Iwashita M: Properties of L-type amino acid transporter 1 in epidermal ovarian cancer. Int J Gynecol Cancer. 20:329–336. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Miyamoto M, Takano M, Furuya K and Tsuda H: Significant relationship between the LAT1 expression pattern and chemoresistance in ovarian clear cell carcinoma. Virchows Arch. 474:701–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baczewska M, Supruniuk E, Bojczuk K, Guzik P, Milewska P, Konończuk K, Dobroch J, Chabowski A and Knapp P: Energy substrate transporters in high-grade ovarian cancer: Gene expression and clinical implications. Int J Mol Sci. 23:89682022. View Article : Google Scholar : PubMed/NCBI | |
Sekine M, Koh I, Nakamoto K, Nosaka S, Tomono K, Sugimoto J and Kudo Y: Selective inhibition of L-type amino acid transporter 1 suppresses cell proliferation in ovarian clear cell carcinoma. Anticancer Res. 43:2509–2517. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yi Z, Li M and Zhu Z: Baicalein improves the chemoresistance of ovarian cancer through regulation of CirSLC7A6. J Ovarian Res. 16:2122023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chen Y, Wang X, Tian H, Wang Y, Jin J, Shan Z, Liu Y, Cai Z, Tong X, et al: Stem Cell Factor SOX2 Confers Ferroptosis Resistance in Lung Cancer via Upregulation of SLC7A11. Cancer Res. 81:5217–5229. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI | |
Cao N, Zhang F, Yin J, Zhang J, Bian X, Zheng G, Li N, Lin Y and Luo L: LPCAT2 inhibits colorectal cancer progression via the PRMT1/SLC7A11 axis. Oncogene. 43:1714–1725. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Roh JL: SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer. Antioxidants (Basel). 11:24442022. View Article : Google Scholar : PubMed/NCBI | |
Škubník J, Svobodová Pavlíčková V, Ruml T and Rimpelová S: Autophagy in cancer resistance to paclitaxel: Development of combination strategies. Biomed Pharmacother. 161:1144582023. View Article : Google Scholar : PubMed/NCBI | |
Jyotsana N, Ta KT and DelGiorno KE: The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Front Oncol. 12:8584622022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Wang C, Cheng S, Zhang Y, Jin Y, Zhang N and Wang Y: Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer. Front Genet. 13:10944742023. View Article : Google Scholar : PubMed/NCBI | |
Cong Y, Cai G, Ding C, Zhang H, Chen J, Luo S and Liu J: Disulfidptosis-related signature elucidates the prognostic, immunologic, and therapeutic characteristics in ovarian cancer. Front Genet. 15:13789072024. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Yi S, Wei L, Zhao B, Li J, Cai X, Dong C and Liu X: Microarray-based identification of genes associated with prognosis and drug resistance in ovarian cancer. J Cell Biochem. 120:6057–6070. 2019. View Article : Google Scholar | |
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X and Yin F: Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol. 11:7449402021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zheng X, Ying X, Xie W, Yin Y and Wang X: CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer. J Transl Med. 21:3342023. View Article : Google Scholar : PubMed/NCBI | |
Ogiwara H, Takahashi K, Sasaki M, Kuroda T, Yoshida H, Watanabe R, Maruyama A, Makinoshima H, Chiwaki F, Sasaki H, et al: Targeting the Vulnerability of Glutathione Metabolism in ARID1A-Deficient Cancers. Cancer Cell. 35:177–190.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Fu L, Kong Y, Jiang C, Huang L and Zhang H: STEAP3 Affects Ovarian Cancer Progression by Regulating Ferroptosis through the p53/SLC7A11 Pathway. Mediators Inflamm. 2024:40485272024. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Chen L, Li L, Huang G, Huang H and Tang C: SNAI2 promotes the development of ovarian cancer through regulating ferroptosis. Bioengineered. 13:6451–6463. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang S and Zhang W: HRD1 functions as a tumor suppressor in ovarian cancer by facilitating ubiquitination-dependent SLC7A11 degradation. Cell Cycle. 22:1116–1126. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chiarella E, Aloisio A, Scicchitano S, Bond HM and Mesuraca M: Regulatory Role of microRNAs Targeting the Transcription Co-Factor ZNF521 in Normal Tissues and Cancers. Int J Mol Sci. 22:84612021. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Hu X, Ye L, Bai P, Jie Y and Shu K: Long non-coding RNA ADAMTS9-AS1 attenuates ferroptosis by Targeting microRNA-587/solute carrier family 7 member 11 axis in epithelial ovarian cancer. Bioengineered. 13:8226–8239. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Zhang L, Wu B and Luo X: A Morpholine Derivative N-(4-Morpholinomethylene) ethanesulfonamide induces ferroptosis in tumor cells by targeting NRF2. Biol Pharm Bull. 47:417–426. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shen X, Peng Y, Zhou H, Ye X, Han Z and Shi X: A Pt(II) complex bearing N-heterocycle ring induced ferroptotic cell death in ovarian cancer. J Inorg Biochem. 253:1125022024. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Liu T, Jiang L, Chen J, Li Q and Wang J: Immunogenic cell death-related gene landscape predicts the overall survival and immune infiltration status of ovarian cancer. Front Genet. 13:10012392022. View Article : Google Scholar : PubMed/NCBI | |
Szadvari I, Hudecova S, Chovancova B, Matuskova M, Cholujova D, Lencesova L, Valerian D, Ondrias K, Babula P and Krizanova O: Sodium/calcium exchanger is involved in apoptosis induced by H2S in tumor cells through decreased levels of intracellular pH. Nitric Oxide. 87:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Long X, Wang D, Lou M, Zou D, Chen R, Nian W and Zhou Q: Increased expression of Na+/H+ exchanger isoform 1 predicts tumor aggressiveness and unfavorable prognosis in epithelial ovarian cancer. Oncol Lett. 16:6713–6720. 2018.PubMed/NCBI | |
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, et al: A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m6A reader YTHDC1. Cell Death Dis. 14:72023. View Article : Google Scholar : | |
Liu JY, Dai YB, Li X, Cao K, Xie D, Tong ZT, Long Z, Xiao H, Chen MK, Ye YL, et al: Solute carrier family 12 member 5 promotes tumor invasion/metastasis of bladder urothelial carcinoma by enhancing NF-κB/MMP-7 signaling pathway. Cell Death Dis Mar. 8:e26912017. View Article : Google Scholar | |
Tong Q, Qin W, Li ZH, Liu C, Wang ZC, Chu Y and Xu XD: SLC12A5 promotes hepatocellular carcinoma growth and ferroptosis resistance by inducing ER stress and cystine transport changes. Cancer Med. 12:8526–8541. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Li X, Cai M, Chen J, Li X, Wu WK, Kang W, Tong J, To KF, Guan XY, et al: Increased expression of Solute carrier family 12 member 5 via gene amplification contributes to tumour progression and metastasis and associates with poor survival in colorectal cancer. Gut. 65:635–646. 2016. View Article : Google Scholar | |
Jiang Y, Liao HL and Chen LY: A Pan-Cancer Analysis of SLC12A5 Reveals Its Correlations with Tumor Immunity. Dis Markers. 2021:30626062021. View Article : Google Scholar : PubMed/NCBI | |
Yang GP, He WP, Tan JF, Yang ZX, Fan RR, Ma NF, Wang FW, Chen L, Li Y, Shen HW, et al: Overexpression of SLC12A5 is associated with tumor progression and poor survival in ovarian carcinoma. Int J Gynecol Cancer. 29:1280–1284. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fisel P, Schaeffeler E and Schwab M: Clinical and functional relevance of the Monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci. 11:352–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of Cancer: New Dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Navarro C, Ortega Á, Santeliz R, Garrido B, Chacín M, Galban N, Vera I, De Sanctis JB and Bermúdez V: Metabolic Reprogramming in Cancer Cells: Emerging molecular mechanisms and novel therapeutic approaches. pharmaceutics. 14:13032022. View Article : Google Scholar : PubMed/NCBI | |
Latif A, Chadwick AL, Kitson SJ, Gregson HJ, Sivalingam VN, Bolton J, McVey RJ, Roberts SA, Marshall KM, Williams KJ, et al: Monocarboxylate transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer. BMC Clin Pathol. 17:272017. View Article : Google Scholar | |
Sohrabi E, Moslemi M, Rezaie E, Nafissi N, Khaledi M, Afkhami H, Fathi J and Zekri A: The tissue expression of MCT3, MCT8, and MCT9 genes in women with breast cancer. Genes Genomics. 43:1065–1077. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee P, Bhowmik D and Roy SS: A systemic analysis of monocarboxylate transporters in ovarian cancer and possible therapeutic interventions. Channels (Austin). 17:22730082023. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Lu W, Kulkarni B, Pejovic T, Yan X, Chiang JH, Hood L, Odunsi K and Lin B: Analysis of chemotherapy response programs in ovarian cancers by the next-generation sequencing technologies. Gynecol Oncol. 11:159–169. 2010. View Article : Google Scholar | |
Januchowski R, Zawierucha P, Ruciński M, Andrzejewska M, Wojtowicz K, Nowicki M and Zabel M: Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed Pharmacother. 68:447–453. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Peña MM, Nose Y and Thiele DJ: Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 277:4380–4387. 2002. View Article : Google Scholar | |
Puris E, Fricker G and Gynther M: The role of solute carrier transporters in efficient anticancer drug delivery and therapy. Pharmaceutics. 15:3642023. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Peng H, Tang M, Yang M, Wang J, Hu Y, Li Z, Li J, Li Z and Song L: ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression. EBioMedicine. 71:1035582021. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Drapkin R, Richardson DL and Birrer M: Targeting NaPi2b in ovarian cancer. Cancer Treat Rev. 112:1024892023. View Article : Google Scholar | |
Bondeson DP, Paolella BR, Asfaw A, Rothberg MV, Skipper TA, Langan C, Mesa G, Gonzalez A, Surface LE, Ito K, et al: Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer. Nat Cancer. 3:681–695. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vlasenkova R, Nurgalieva A, Akberova N, Bogdanov M and Kiyamova R: Characterization of SLC34A2 as a potential prognostic marker of oncological diseases. Biomolecules. 11:18782021. View Article : Google Scholar : PubMed/NCBI | |
Stiles LI, Ferrao K and Mehta KJ: Role of zinc in health and disease. Clin Exp Med. 24:382024. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, et al: Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther. 9:62024. View Article : Google Scholar : PubMed/NCBI | |
Vogel-González M, Musa-Afaneh D, Rivera Gil P and Vicente R: Zinc Favors Triple-negative breast cancer's microenvironment modulation and cell plasticity. Int J Mol Sci. 22:91882021. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Yang J, Zhang Y, Zhou Z, Cui X, Zhang L, Fung KM, Zheng W, Allard FD, Yee EU, et al: ZIP4 Promotes Pancreatic Cancer Progression by Repressing ZO-1 and Claudin-1 through a ZEB1-Dependent Transcriptional Mechanism. Clin Cancer Res. 24:3186–3196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Zhang W, Emerson RE and Xu Y: ZIP4 is a novel cancer stem cell marker in high-grade serous ovarian cancer. Cancers (Basel). 12:36922020. View Article : Google Scholar : PubMed/NCBI | |
Scheiter A, Evert K, Reibenspies L, Cigliano A, Annweiler K, Müller K, Pöhmerer LM, Xu H, Cui G, Itzel T, et al: RASSF1A independence and early galectin-1 upregulation in PIK3CA-induced hepatocarcinogenesis: New therapeutic venues. Mol Oncol. 16:1091–1118. 2022. View Article : Google Scholar | |
Fan Q, Cai Q, Li P, Wang W, Wang J, Gerry E, Wang TL, Shih IM, Nephew KP and Xu Y: The novel ZIP4 regulation and its role in ovarian cancer. Oncotarget. 8:90090–90107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Fan Q, Buechlein A, Miller D, Nephew KP, Liu S, Wan J and Xu Y: Changes in mRNA/protein expression and signaling pathways in in vivo passaged mouse ovarian cancer cells. PLoS One. 13:e01974042018. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, Zhao H and Xu Z: Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 40:1992021. View Article : Google Scholar : PubMed/NCBI | |
Akasu-Nagayoshi Y, Hayashi T, Kawabata A, Shimizu N, Yamada A, Yokota N, Nakato R, Shirahige K, Okamoto A and Akiyama T: PHOSPHATE exporter XPR1/SLC53A1 is required for the tumorigenicity of epithelial ovarian cancer. Cancer Sci. 113:2034–2043. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S and Basha R: Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 8:7018–7031. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sato S, Shoji T, Jo A, Otsuka H, Abe M, Tatsuki S, Chiba Y, Takatori E, Kaido Y, Nagasawa T, et al: Antibody-Drug Conjugates: The new treatment approaches for ovarian cancer. Cancers (Basel). 16:25452024. View Article : Google Scholar : PubMed/NCBI | |
Karpel HC, Powell SS and Pothuri B: Antibody-Drug Conjugates in Gynecologic Cancer. Am Soc Clin Oncol Educ Book. 43:e3907722023. View Article : Google Scholar : PubMed/NCBI |