Pharmacological and dietary agents for colorectal cancer chemoprevention: Effects on polyamine metabolism (Review)
- Authors:
- Michele Linsalata
- Antonella Orlando
- Francesco Russo
-
Affiliations: Laboratory of Nutritional Pathophysiology, National Institute for Digestive Diseases, I.R.C.C.S. ‘S. de Bellis’ Via Turi 27, Castellana Grotte (Ba), I-70013, Italy - Published online on: August 14, 2014 https://doi.org/10.3892/ijo.2014.2597
- Pages: 1802-1812
This article is mentioned in:
Abstract
Surh YJ: Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI | |
Casero RA Jr and Marton LJ: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov. 6:373–390. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ramani D, De Bandt JP and Cynober L: Aliphatic polyamines in physiology and diseases. Clin Nutr. 33:14–22. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thomas T and Thomas TJ: Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 58:244–258. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rothenburg S, Koch-Nolte F, Rich A and Haag F: A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci USA. 98:8985–8990. 2001. View Article : Google Scholar : PubMed/NCBI | |
Iacomino G, Picariello G and D’Agostino L: DNA and nuclear aggregates of polyamines. Biochim Biophys Acta. 1823:1745–1755. 2012. View Article : Google Scholar | |
Igarashi K and Kashiwagi K: Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 42:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pegg AE and Casero RA Jr: Current status of the polyamine research field. Methods Mol Biol. 720:3–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pegg AE: Mammalian polyamine metabolism and function. IUBMB Life. 61:880–894. 2009. View Article : Google Scholar : PubMed/NCBI | |
Coffino P: Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol. 2:188–194. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bachrach U: Polyamines and cancer: minireview article. Amino Acids. 26:307–309. 2004. View Article : Google Scholar : PubMed/NCBI | |
Linsalata M, Caruso MG, Leo S, Guerra V, D’Attoma B and Di Leo A: Prognostic value of tissue polyamine levels in human colorectal carcinoma. Anticancer Res. 22:2465–2469. 2002.PubMed/NCBI | |
Linsalata M, Giannini R, Notarnicola M and Cavallini A: Peroxisome proliferator-activated receptor gamma and spermidine/spermine N1-acetyltransferase gene expressions are significantly correlated in human colorectal cancer. BMC Cancer. 6:1912006. View Article : Google Scholar | |
Shantz LM and Levin VA: Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids. 33:213–223. 2007. View Article : Google Scholar | |
Erdman SH, Ignatenko NA, Powell MB, et al: APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis. 20:1709–1713. 1999. View Article : Google Scholar | |
Casero RA and Pegg AE: Polyamine catabolism and disease. Biochem J. 421:323–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Palmer AJ and Wallace HM: The polyamine transport system as a target for anticancer drug development. Amino Acids. 38:415–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thompson PA and Gerner EW: Current concepts in colorectal cancer prevention. Expert Rev Gastroenterol Hepatol. 3:369–382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pegg AE: Regulation of ornithine decarboxylase. J Biol Chem. 281:14529–14532. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xiao L and Wang J-Y: Posttranscriptional regulation of gene expression in epithelial cells by polyamines. Methods Mol Biol. 720:67–79. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ignatenko NA, Babbar N, Mehta D, Casero RA Jr and Gerner EW: Suppression of polyamine catabolism by activated Ki-ras in human colon cancer cells. Mol Carcinog. 39:91–102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Linsalata M, Notarnicola M, Caruso MG, Di Leo A, Guerra V and Russo F: Polyamine biosynthesis in relation to K-ras and p-53 mutations in colorectal carcinoma. Scand J Gastroenterol. 39:470–477. 2004. View Article : Google Scholar : PubMed/NCBI | |
Notarnicola M, Linsalata M, Caruso MG, et al: Genetic and biochemical changes in colorectal carcinoma in relation to morphologic characteristics. Oncol Rep. 10:1987–1991. 2003.PubMed/NCBI | |
Babbar N and Gerner EW: Targeting polyamines and inflammation for cancer prevention. Recent Results Cancer Res. 188:49–64. 2011. View Article : Google Scholar : PubMed/NCBI | |
Seiler N: Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect Part 1 Selective enzyme inhibitors. Curr Drug Targets. 4:537–564. 2003. | |
Laukaitis CM and Gerner EW: DFMO: targeted risk reduction therapy for colorectal neoplasia. Best Pract Res Clin Gastroenterol. 25:495–506. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gerner EW and Meyskens FL Jr: Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer. 4:781–792. 2004. View Article : Google Scholar : PubMed/NCBI | |
Love RR, Carbone PP, Verma AK, et al: Randomized phase I chemoprevention dose-seeking study of alpha-difluoromethylornithine. J Natl Cancer Inst. 85:732–737. 1993. View Article : Google Scholar : PubMed/NCBI | |
Levin VA, Uhm JH, Jaeckle KA, et al: Phase III randomized study of postradiotherapy chemotherapy with alpha-difluoromethylornithine-procarbazine, N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosurea, vincristine (DFMO-PCV) versus PCV for glioblastoma multiforme. Clin Cancer Res. 6:3878–3884. 2000.PubMed/NCBI | |
Leveque J, Burtin F, Catros-Quemener V, Havouis R and Moulinoux JP: The gastrointestinal polyamine source depletion enhances DFMO induced polyamine depletion in MCF-7 human breast cancer cells in vivo. Anticancer Res. 18:2663–2668. 1998.PubMed/NCBI | |
Meyskens FL Jr and Gerner EW: Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res. 5:945–951. 1999.PubMed/NCBI | |
Gerner EW: Cancer chemoprevention locks onto a new polyamine metabolic target. Cancer Prev Res (Phila). 3:125–127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Love RR, Jacoby R, Newton MA, et al: A randomized, placebo-controlled trial of low-dose alpha-difluoromethylornithine in individuals at risk for colorectal cancer. Cancer Epidemiol Biomarkers Prev. 7:989–992. 1998.PubMed/NCBI | |
Meyskens FL Jr, Gerner EW, Emerson S, et al: Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst. 90:1212–1218. 1998. View Article : Google Scholar | |
Flossmann E and Rothwell PM: Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 369:1603–1613. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lawson KR, Ignatenko NA, Piazza GA, Cui H and Gerner EW: Influence of K-ras activation on the survival responses of Caco-2 cells to the chemopreventive agents sulindac and difluoromethylornithine. Cancer Epidemiol Biomarkers Prev. 9:1155–1162. 2000.PubMed/NCBI | |
Gerner EW and Meyskens FL Jr: Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res. 15:758–761. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jacoby RF, Cole CE, Tutsch K, et al: Chemopreventive efficacy of combined piroxicam and difluoromethylornithine treatment of Apc mutant Min mouse adenomas, and selective toxicity against Apc mutant embryos. Cancer Res. 60:1864–1870. 2000. | |
Ignatenko NA, Besselsen DG, Stringer DE, Blohm-Mangone KA, Cui H and Gerner EW: Combination chemoprevention of intestinal carcinogenesis in a murine model of familial adenomatous polyposis. Nutr Cancer. 60(Suppl 1): 30–35. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thompson PA, Wertheim BC, Zell JA, et al: Levels of rectal mucosal polyamines and prostaglandin E2 predict ability of DFMO and sulindac to prevent colorectal adenoma. Gastroenterology. 139:797–805. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meyskens FL Jr, McLaren CE, Pelot D, et al: Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev Res (Phila). 1:32–38. 2008. View Article : Google Scholar | |
Zell JA, Pelot D, Chen WP, McLaren CE, Gerner EW and Meyskens FL: Risk of cardiovascular events in a randomized placebo-controlled, double-blind trial of difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas. Cancer Prev Res (Phila). 2:209–212. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zell JA, Ziogas A, Ignatenko N, et al: Associations of a polymorphism in the ornithine decarboxylase gene with colorectal cancer survival. Clin Cancer Res. 15:6208–6216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez ME, O’Brien TG, Fultz KE, et al: Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci USA. 100:7859–7864. 2003. View Article : Google Scholar | |
Hubner RA, Muir KR, Liu JF, Logan RF, Grainge MJ and Houlston RS: Ornithine decarboxylase G316A genotype is prognostic for colorectal adenoma recurrence and predicts efficacy of aspirin chemoprevention. Clin Cancer Res. 14:2303–2309. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jell J, Merali S, Hensen ML, et al: Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem. 282:8404–8413. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jacobs ET, Ahnen DJ, Ashbeck EL, et al: Association between body mass index and colorectal neoplasia at follow-up colonoscopy: a pooling study. Am J Epidemiol. 169:657–666. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zell JA, Lin BS, Madson N, McLaren CE, Gerner EW and Meyskens FL: Role of obesity in a randomized placebo-controlled trial of difluoromethylornithine (DFMO) + sulindac for the prevention of sporadic colorectal adenomas. Cancer Causes Control. 23:1739–1744. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wallace HM and Fraser AV: Inhibitors of polyamine metabolism: review article. Amino Acids. 26:353–365. 2004. View Article : Google Scholar : PubMed/NCBI | |
Niiranen K, Pietila M, Pirttila TJ, et al: Targeted disruption of spermidine/spermine N1-acetyltransferase gene in mouse embryonic stem cells. Effects on polyamine homeostasis and sensitivity to polyamine analogues. J Biol Chem. 277:25323–25328. 2002. View Article : Google Scholar : PubMed/NCBI | |
Battaglia V, DeStefano Shields C, Murray-Stewart T and Casero RA Jr: Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids. 46:511–519. 2014. View Article : Google Scholar : PubMed/NCBI | |
Seiler N: Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect Part 2 Structural analogues and derivatives. Curr Drug Targets. 4:565–585. 2003.PubMed/NCBI | |
Wallace HM and Niiranen K: Polyamine analogues - an update. Amino Acids. 33:261–265. 2007. View Article : Google Scholar : PubMed/NCBI | |
Belting M, Borsig L, Fuster MM, et al: Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA. 99:371–376. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bonithon-Kopp C, Kronborg O, Giacosa A, Rath U and Faivre J: Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. European Cancer Prevention Organisation Study Group. Lancet. 356:1300–1306. 2000. View Article : Google Scholar : PubMed/NCBI | |
Delzenne NM and Williams CM: Prebiotics and lipid metabolism. Curr Opin Lipidol. 13:61–67. 2002. View Article : Google Scholar : PubMed/NCBI | |
Food and Agriculture Organization of the United Nations and World Health Organization. Probiotics in food: health and nutritional properties and guidelines for evaluation. Food and Agriculture Organization of the United Nations, World Health Organization; Rome: 2006 | |
Boesten RJ and de Vos WM: Interactomics in the human intestine: Lactobacilli and Bifidobacteria make a difference. J Clin Gastroenterol. 42(Suppl 3): S163–S167. 2008. View Article : Google Scholar | |
Quigley EM: Gut bacteria in health and disease. Gastroenterol Hepatol (NY). 9:560–569. 2013.PubMed/NCBI | |
Riezzo G, Orlando A, D’Attoma B, et al: Randomised clinical trial: efficacy of Lactobacillus paracasei-enriched artichokes in the treatment of patients with functional constipation - a double-blind, controlled, crossover study. Aliment Pharmacol Ther. 35:441–450. 2012. | |
Valerio F, de Candia S, Lonigro SL, et al: Role of the probiotic strain Lactobacillus paracasei LMGP22043 carried by artichokes in influencing faecal bacteria and biochemical parameters in human subjects. J Appl Microbiol. 111:155–164. 2011.PubMed/NCBI | |
Sisto A and Lavermicocca P: Suitability of a probiotic Lactobacillus paracasei strain as a starter culture in olive fermentation and development of the innovative patented product ‘probiotic table olives’. Front Microbiol. 3:1742012. | |
Ishikawa H, Akedo I, Otani T, et al: Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer. 116:762–767. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Lazarova DL and Bordonaro M: Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 6:41–51. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni N and Reddy BS: Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial beta-glucuronidase. Proc Soc Exp Biol Med. 207:278–283. 1994. | |
Boleij A and Tjalsma H: Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 87:701–730. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N and Reddy BS: Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 18:833–841. 1997. View Article : Google Scholar | |
Di Marzio L, Russo FP, D’Alo S, et al: Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and/or sphingomyelinase activities. Nutr Cancer. 40:185–196. 2001. | |
Linsalata M, Russo F, Berloco P, et al: The influence of Lactobacillus brevis on ornithine decarboxylase activity and polyamine profiles in Helicobacter pylori-infected gastric mucosa. Helicobacter. 9:165–172. 2004. | |
Famularo G, Perluigi M, Pieluigi M, Coccia R, Mastroiacovo P and De Simone C: Microecology, bacterial vaginosis and probiotics: perspectives for bacteriotherapy. Med Hypotheses. 56:421–430. 2001. View Article : Google Scholar : PubMed/NCBI | |
Orlando A, Messa C, Linsalata M, Cavallini A and Russo F: Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol Immunotoxicol. 31:108–116. 2009. | |
Buts JP and De Keyser N: Effects of Saccharomyces boulardii on intestinal mucosa. Dig Dis Sci. 51:1485–1492. 2006. | |
Linsalata M, Russo F, Berloco P, et al: Effects of probiotic bacteria (VSL#3) on the polyamine biosynthesis and cell proliferation of normal colonic mucosa of rats. In Vivo. 19:989–995. 2005. | |
Matsumoto M and Benno Y: Consumption of Bifidobacterium lactis LKM512 yogurt reduces gut mutagenicity by increasing gut polyamine contents in healthy adult subjects. Mutat Res. 568:147–153. 2004. | |
Cederroth CR and Nef S: Soy, phytoestrogens and metabolism: A review. Mol Cell Endocrinol. 304:30–42. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thompson LU, Robb P, Serraino M and Cheung F: Mammalian lignan production from various foods. Nutr Cancer. 16:43–52. 1991. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Rosano C, Angelini G, et al: Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr Med Chem. 21:1129–1145. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cassidy A: Potential risks and benefits of phytoestrogen-rich diets. Int J Vitam Nutr Res. 73:120–126. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey A and Harper P: Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr. 136:3046–3053. 2006.PubMed/NCBI | |
Lechner D, Kállay E and Cross HS: Phytoestrogens and colorectal cancer prevention. Vitam Horm. 70:169–198. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hawrylewicz EJ, Zapata JJ and Blair WH: Soy and experimental cancer: animal studies. J Nutr. 125:698S–708S. 1995.PubMed/NCBI | |
Linsalata M, Messa C, Russo F, Cavallini A and Di Leo A: Estrogen receptors and polyamine levels in human gastric carcinoma. Scand J Gastroenterol. 29:67–70. 1994. View Article : Google Scholar : PubMed/NCBI | |
Russo F, Linsalata M, Messa C, et al: Polyamines and estrogen-receptor concentrations in human colorectal carcinomas. Ital J Gastroenterol. 24:8–12. 1992.PubMed/NCBI | |
Cross HS, Kallay E, Lechner D, Gerdenitsch W, Adlercreutz H and Armbrecht HJ: Phytoestrogens and vitamin D metabolism: a new concept for the prevention and therapy of colorectal, prostate, and mammary carcinomas. J Nutr. 134:1207S–1212S. 2004.PubMed/NCBI | |
Booth C, Hargreaves DF, Hadfield JA, McGown AT and Potten CS: Isoflavones inhibit intestinal epithelial cell proliferation and induce apoptosis in vitro. Br J Cancer. 80:1550–1557. 1999. View Article : Google Scholar : PubMed/NCBI | |
Li HQ, Luo Y and Qiao CH: The mechanisms of anticancer agents by genistein and synthetic derivatives of isoflavone. Mini Rev Med Chem. 12:350–362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shon YH, Park SD and Nam KS: Effective chemopreventive activity of genistein against human breast cancer cells. J Biochem Mol Biol. 39:448–451. 2006. View Article : Google Scholar : PubMed/NCBI | |
Linsalata M, Russo F, Notarnicola M, et al: Effects of genistein on the polyamine metabolism and cell growth in DLD-1 human colon cancer cells. Nutr Cancer. 52:84–93. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Makita H, Kawabata K, et al: Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis. 18:957–965. 1997. View Article : Google Scholar : PubMed/NCBI | |
Au A, Li B, Wang W, Roy H, Koehler K and Birt D: Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr Cancer. 54:243–251. 2006. View Article : Google Scholar : PubMed/NCBI | |
Linsalata M, Orlando A, Messa C, Refolo MG and Russo F: Quercetin inhibits human DLD-1 colon cancer cell growth and polyamine biosynthesis. Anticancer Res. 30:3501–3507. 2010.PubMed/NCBI | |
Gosse F, Roussi S, Guyot S, et al: Potentiation of apple procyanidin-triggered apoptosis by the polyamine oxidase inactivator MDL 72527 in human colon cancer-derived metastatic cells. Int J Oncol. 29:423–428. 2006. | |
Ibanez C, Simo C, Garcia-Canas V, Gomez-Martinez A, Ferragut JA and Cifuentes A: CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis. 33:2328–2336. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wallerath T, Deckert G, Ternes T, et al: Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 106:1652–1658. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sengottuvelan M, Senthilkumar R and Nalini N: Modulatory influence of dietary resveratrol during different phases of 1,2-dimethylhydrazine induced mucosal lipid-peroxidation, antioxidant status and aberrant crypt foci development in rat colon carcinogenesis. Biochim Biophys Acta. 1760:1175–1183. 2006. View Article : Google Scholar | |
Wolter F and Stein J: Resveratrol enhances the differentiation induced by butyrate in caco-2 colon cancer cells. J Nutr. 132:2082–2086. 2002.PubMed/NCBI | |
Schneider Y, Vincent F, Duranton B, et al: Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett. 158:85–91. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schneider Y, Duranton B, Gosse F, Schleiffer R, Seiler N and Raul F: Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr Cancer. 39:102–107. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wolter F, Turchanowa L and Stein J: Resveratrol-induced modification of polyamine metabolism is accompanied by induction of c-Fos. Carcinogenesis. 24:469–474. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ulrich S, Loitsch SM, Rau O, et al: Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism. Cancer Res. 66:7348–7354. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wolter F, Ulrich S and Stein J: Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: key role of polyamines? J Nutr. 134:3219–3222. 2004.PubMed/NCBI | |
Henning SM, Wang P, Abgaryan N, et al: Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer. Mol Nutr Food Res. 57:483–493. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang CS, Li G, Yang Z, Guan F, Chen A and Ju J: Cancer prevention by tocopherols and tea polyphenols. Cancer Lett. Feb 8–2013.(Epub ahead of print). | |
Kumazaki M, Noguchi S, Yasui Y, et al: Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 24:1849–1858. 2013. View Article : Google Scholar | |
Melgarejo E, Urdiales JL, Sanchez-Jimenez F and Medina MA: Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate. Amino Acids. 38:519–523. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bachrach U and Wang YC: Cancer therapy and prevention by green tea: role of ornithine decarboxylase. Amino Acids. 22:1–13. 2002. View Article : Google Scholar : PubMed/NCBI | |
Paul B, Hayes CS, Kim A, Athar M and Gilmour SK: Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (−)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice. Carcinogenesis. 26:119–124. 2005.PubMed/NCBI | |
Chung JY, Huang C, Meng X, Dong Z and Yang CS: Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res. 59:4610–4617. 1999.PubMed/NCBI | |
Gupta S, Ahmad N, Marengo SR, MacLennan GT, Greenberg NM and Mukhtar H: Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Res. 60:5125–5133. 2000.PubMed/NCBI | |
Milovic V, Turchanowa L, Stein J and Caspary WF: Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2. World J Gastroenterol. 7:193–197. 2001.PubMed/NCBI | |
Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW and Meyskens FL Jr: Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 107:1024–1027. 2007. View Article : Google Scholar : PubMed/NCBI | |
Loser C, Eisel A, Harms D and Folsch UR: Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut. 44:12–16. 1999. View Article : Google Scholar : PubMed/NCBI | |
Seiler N, Sarhan S, Grauffel C, Jones R, Knodgen B and Moulinoux JP: Endogenous and exogenous polyamines in support of tumor growth. Cancer Res. 50:5077–5083. 1990.PubMed/NCBI | |
Muth A, Madan M, Archer JJ, Ocampo N, Rodriguez L and Phanstiel O: Polyamine transport inhibitors: design, synthesis, and combination therapies with difluoromethylornithine. J Med Chem. 57:348–363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ignatenko NA, Besselsen DG, Roy UK, et al: Dietary putrescine reduces the intestinal anticarcinogenic activity of sulindac in a murine model of familial adenomatous polyposis. Nutr Cancer. 56:172–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yerushalmi HF, Besselsen DG, Ignatenko NA, et al: Role of polyamines in arginine-dependent colon carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog. 45:764–773. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gerner EW: Impact of dietary amino acids and polyamines on intestinal carcinogenesis and chemoprevention in mouse models. Biochem Soc Trans. 35:322–325. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ignatenko NA, Gerner EW and Besselsen DG: Defining the role of polyamines in colon carcinogenesis using mouse models. J Carcinog. 10:102011. View Article : Google Scholar : PubMed/NCBI | |
Zell JA, Ignatenko NA, Yerushalmi HF, et al: Risk and risk reduction involving arginine intake and meat consumption in colorectal tumorigenesis and survival. Int J Cancer. 120:459–468. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vargas AJ, Wertheim BC, Gerner EW, Thomson CA, Rock CL and Thompson PA: Dietary polyamine intake and risk of colorectal adenomatous polyps. Am J Clin Nutr. 96:133–141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Raj KP, Zell JA, Rock CL, et al: Role of dietary polyamines in a phase III clinical trial of difluoromethylornithine (DFMO) and sulindac for prevention of sporadic colorectal adenomas. Br J Cancer. 108:512–518. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cipolla BG, Havouis R and Moulinoux JP: Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients. Biomed Pharmacother. 64:363–368. 2010. View Article : Google Scholar : PubMed/NCBI |