1
|
Jones PA: Overview of cancer epigenetics.
Semin Hematol. 42:S3–S8. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weber M, Hellmann I, Stadler MB, et al:
Distribution, silencing potential and evolutionary impact of
promoter DNA methylation in the human genome. Nat Genet.
39:457–466. 2007. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Davis CD and Uthus EO: DNA methylation,
cancer susceptibility, and nutrient interactions. Exp Biol Med
(Maywood). 229:988–995. 2004.PubMed/NCBI
|
4
|
Jimenez-Useche I and Yuan C: The effect of
DNA CpG methylation on the dynamic conformation of a nucleosome.
Biophys J. 103:2502–2512. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ito K, Barnes PJ and Adcock IM:
Glucocorticoid receptor recruitment of histone deacetylase 2
inhibits interleukin-1beta-induced histone H4 acetylation on
lysines 8 and 12. Mol Cell Biol. 20:6891–6903. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jovanovic J, Ronneberg JA, Tost J and
Kristensen V: The epigenetics of breast cancer. Mol Oncol.
4:242–254. 2010. View Article : Google Scholar
|
7
|
Beisel C and Paro R: Silencing chromatin:
comparing modes and mechanisms. Nat Rev Genet. 12:123–135. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang BH, Parkin DM, Cai L and Zhang ZF:
Cancer burden and trends in the Asian Pacific Rim region. Asian Pac
J Cancer Prev. 5:96–117. 2004.PubMed/NCBI
|
9
|
Esteller M: Epigenetics in cancer. N Engl
J Med. 358:1148–1159. 2008. View Article : Google Scholar
|
10
|
Zhang X, Sun Q, Shan M, et al: Promoter
hypermethylation of ARID1A gene is responsible for its low mRNA
expression in many invasive breast cancers. PloS One. 8:e539312013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bubnov V, Moskalev E, Petrovskiy Y, Bauer
A, Hoheisel J and Zaporozhan V: Hypermethylation of TUSC5 genes in
breast cancer tissue. Exp Oncol. 34:370–372. 2012.PubMed/NCBI
|
12
|
Heyn H, Carmona FJ, Gomez A, et al: DNA
methylation profiling in breast cancer discordant identical twins
identifies DOK7 as novel epigenetic biomarker. Carcinogenesis.
34:102–108. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Faryna M, Konermann C, Aulmann S, et al:
Genome-wide methylation screen in low-grade breast cancer
identifies novel epigenetically altered genes as potential
biomarkers for tumor diagnosis. FASEB J. 26:4937–4950. 2012.
View Article : Google Scholar
|
14
|
Lo Nigro C, Monteverde M, Lee S, et al:
NT5E CpG island methylation is a favourable breast cancer
biomarker. Br J Cancer. 107:75–83. 2012.PubMed/NCBI
|
15
|
Kim MS, Lee J, Oh T, et al: Genome-wide
identification of OTP gene as a novel methylation marker of
breast cancer. Oncol Rep. 27:1681–1688. 2012.PubMed/NCBI
|
16
|
Novak P, Jensen T, Oshiro MM, Watts GS,
Kim CJ and Futscher BW: Agglomerative epigenetic aberrations are a
common event in human breast cancer. Cancer Res. 68:8616–8625.
2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Coolen MW, Stirzaker C, Song JZ, et al:
Consolidation of the cancer genome into domains of repressive
chromatin by longrange epigenetic silencing (LRES) reduces
transcriptional plasticity. Nat Cell Biol. 12:235–246.
2010.PubMed/NCBI
|
18
|
Novak P, Jensen T, Oshiro MM, et al:
Epigenetic inactivation of the HOXA gene cluster in breast
cancer. Cancer Res. 66:10664–10670. 2006.
|
19
|
Ehrlich M: DNA methylation in cancer: too
much, but also too little. Oncogene. 21:5400–5413. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Costa FF, Paixao VA, Cavalher FP, et al:
SATR-1 hypomethylation is a common and early event in breast
cancer. Cancer Genet Cytogenet. 165:135–143. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Berman BP, Weisenberger DJ, Aman JF, et
al: Regions of focal DNA hypermethylation and long-range
hypomethylation in colorectal cancer coincide with nuclear
lamina-associated domains. Nat Genet. 44:40–46. 2012. View Article : Google Scholar
|
22
|
Li M, Balch C, Montgomery JS, et al:
Integrated analysis of DNA methylation and gene expression reveals
specific signaling pathways associated with platinum resistance in
ovarian cancer. BMC Med Genomics. 2:342009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cancer Genome Atlas Network. Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun Z, Asmann YW, Kalari KR, et al:
Integrated analysis of gene expression, CpG island methylation, and
gene copy number in breast cancer cells by deep sequencing. PloS
One. 6:e174902011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mokhtar NM, Ramzi NH, Yin-Ling W, Rose IM,
Hatta Mohd Dali AZ and Jamal R: Laser capture microdissection with
genome-wide expression profiling displayed gene expression
signatures in endometrioid endometrial cancer. Cancer Invest.
30:156–164. 2012. View Article : Google Scholar
|
26
|
Bibikova M, Le J, Barnes B, et al:
Genome-wide DNA methylation profiling using Infinium®
assay. Epigenomics. 1:177–200. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Eads CA, Danenberg KD, Kawakami K, et al:
MethyLight: a high-throughput assay to measure DNA methylation.
Nucleic Acids Res. 28:E322000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mascolo M, Siano M, Ilardi G, et al:
Epigenetic disregulation in oral cancer. Int J Mol Sci.
13:2331–2353. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Qu Z, Fu J, Yan P, Hu J, Cheng SY and Xiao
G: Epigenetic repression of PDZ-LIM domain-containing protein 2:
implications for the biology and treatment of breast cancer. J Biol
Chem. 285:11786–11792. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yano M, Toyooka S, Tsukuda K, et al:
Aberrant promoter methylation of human DAB2 interactive protein
(hDAB2IP) gene in lung cancers. Int J Cancer. 113:59–66. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Jeschke J, Van Neste L, Glockner SC, et
al: Biomarkers for detection and prognosis of breast cancer
identified by a functional hypermethylome screen. Epigenetics.
7:701–709. 2012. View Article : Google Scholar
|
32
|
Rhodes DR, Ateeq B, Cao Q, et al: AGTR1
overexpression defines a subset of breast cancer and confers
sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci
USA. 106:10284–10289. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bieche I, Chavey C, Andrieu C, et al: CXC
chemokines located in the 4q21 region are up-regulated in breast
cancer. Endocr Relat Cancer. 14:1039–1052. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Evron E, Umbricht CB, Korz D, et al: Loss
of cyclin D2 expression in the majority of breast cancers is
associated with promoter hypermethylation. Cancer Res.
61:2782–2787. 2001.PubMed/NCBI
|
35
|
Veeck J, Bektas N, Hartmann A, et al: Wnt
signalling in human breast cancer: expression of the putative Wnt
inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter
hypermethylation in mammary tumours. Breast Cancer Res.
R82:2008.PubMed/NCBI
|
36
|
Cao XC, Zhang WR, Cao WF, et al:
Aquaporin3 is required for FGF-2-induced migration of human breast
cancers. PloS One. 8:e567352013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sidiropoulos M, Pampalakis G, Sotiropoulou
G, Katsaros D and Diamandis EP: Downregulation of human kallikrein
10 (KLK10/NES1) by CpG island hypermethylation in breast, ovarian
and prostate cancers. Tumour Biol. 26:324–336. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fernandez SV, Snider KE, Wu YZ, Russo IH,
Plass C and Russo J: DNA methylation changes in a human cell model
of breast cancer progression. Mutat Res. 688:28–35. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Garver RI Jr, Radford DM, Donis-Keller H,
Wick MR and Milner PG: Midkine and pleiotrophin expression in
normal and malignant breast tissue. Cancer. 74:1584–1590. 1994.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Perez-Pinera P, Garcia-Suarez O,
Menendez-Rodriguez P, et al: The receptor protein tyrosine
phosphatase (RPTP)β/ζ is expressed in different subtypes of human
breast cancer. Biochem Biophys Res Commun. 362:5–10. 2007.
|
41
|
Lo PK, Mehrotra J, D’Costa A, et al:
Epigenetic suppression of secreted frizzled related protein 1
(SFRP1) expression in human breast cancer. Cancer Biol Ther.
5:281–286. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ko CD, Kim JS, Ko BG, et al: The meaning
of the c-kit proto-oncogene product in malignant transformation in
human mammary epithelium. Clin Exp Metastasis. 20:593–597. 2003.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Stein T, Cosimo E, Yu X, et al: Loss of
reelin expression in breast cancer is epigenetically controlled and
associated with poor prognosis. Am J Pathol. 177:2323–2333. 2010.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Dote H, Toyooka S, Tsukuda K, et al:
Aberrant promoter methylation in human DAB2 interactive protein
(hDAB2IP) gene in breast cancer. Clin Cancer Res.
10:2082–2089. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hoang BH, Kubo T, Healey JH, et al:
Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma
cells by modulating the Wnt-beta-catenin pathway. Cancer Res.
64:2734–2739. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Goyal J, Smith KM, Cowan JM, Wazer DE, Lee
SW and Band V: The role for NES1 serine protease as a novel tumor
suppressor. Cancer Res. 58:4782–4786. 1998.PubMed/NCBI
|
47
|
Huang HE, Chin SF, Ginestier C, et al: A
recurrent chromosome breakpoint in breast cancer at the
NRG1/neuregulin 1/heregulin gene. Cancer Res. 64:6840–6844. 2004.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kioulafa M, Kaklamanis L, Stathopoulos E,
Mavroudis D, Georgoulias V and Lianidou ES: Kallikrein 10 (KLK10)
methylation as a novel prognostic biomarker in early breast cancer.
Ann Oncol. 20:1020–1025. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Veeck J, Niederacher D, An H, et al:
Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer
is associated with unfavourable prognosis. Oncogene. 25:3479–3488.
2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Dahl E, Veeck J, An H, et al: Epigenetic
inactivation of the WNT antagonist SFRP1 in breast cancer. Verh
Dtsch Ges Pathol. 89:169–177. 2005.(In German).
|
51
|
Xie D, Gore C, Zhou J, et al: DAB2IP
coordinates both PI3K-Akt and ASK1 pathways for cell survival and
apoptosis. Proc Natl Acad Sci USA. 106:19878–19883. 2009.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang X, Li N, Li X, et al: Low expression
of DAB2IP contributes to malignant development and poor prognosis
in hepatocellular carcinoma. J Gastroenterol Hepatol. 27:1117–1125.
2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Henderson DJ, Phillips HM and Chaudhry B:
Vang-like 2 and noncanonical Wnt signaling in outflow tract
development. Trends Cardiovasc Med. 16:38–45. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Cadigan KM and Nusse R: Wnt signaling: a
common theme in animal development. Genes Dev. 11:3286–3305. 1997.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang J, Liu J, Li X, et al: The physical
and functional interaction of NDRG2 with MSP58 in cells. Biochem
Biophys Res Commun. 352:6–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zheng J, Liu Q, Li Y, et al: NDRG2
expression regulates CD24 and metastatic potential of breast cancer
cells. Asian Pac J Cancer Prev. 11:1817–1821. 2010.PubMed/NCBI
|
57
|
Euhus DM, Bu D, Milchgrub S, et al: DNA
methylation in benign breast epithelium in relation to age and
breast cancer risk. Cancer Epidemiol Biomarkers Prev. 17:1051–1059.
2008. View Article : Google Scholar : PubMed/NCBI
|
58
|
Bikfalvi A, Klein S, Pintucci G and Rifkin
DB: Biological roles of fibroblast growth factor-2. Endocr Rev.
18:26–45. 1997.
|
59
|
Loss LA, Sadanandam A, Durinck S, et al:
Prediction of epigenetically regulated genes in breast cancer cell
lines. BMC Bioinformatics. 11:3052010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Mazouni C, Arun B, Andre F, et al:
Collagen IV levels are elevated in the serum of patients with
primary breast cancer compared to healthy volunteers. Br J Cancer.
99:68–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Summers KM, Bokil NJ, Baisden JM, et al:
Experimental and bioinformatic characterisation of the promoter
region of the Marfan syndrome gene, FBN1. Genomics.
94:233–240. 2009. View Article : Google Scholar : PubMed/NCBI
|
62
|
Sengupta PK, Smith EM, Kim K, Murnane MJ
and Smith BD: DNA hypermethylation near the transcription start
site of collagen α2(I) gene occurs in both cancer cell lines and
primary colorectal cancers. Cancer Res. 63:1789–1797.
2003.PubMed/NCBI
|
63
|
Ross DT and Perou CM: A comparison of gene
expression signatures from breast tumors and breast tissue derived
cell lines. Dis Markers. 17:99–109. 2001. View Article : Google Scholar : PubMed/NCBI
|
64
|
Clark MB, Johnston RL, Inostroza-Ponta M,
et al: Genome-wide analysis of long noncoding RNA stability. Genome
Res. 22:885–898. 2012. View Article : Google Scholar : PubMed/NCBI
|
65
|
Kumar R, Gururaj AE and Barnes CJ:
p21-activated kinases in cancer. Nat Rev Cancer. 6:459–471. 2006.
View Article : Google Scholar
|
66
|
Dohi O, Takada H, Wakabayashi N, et al:
Epigenetic silencing of RELN in gastric cancer. Int J Oncol.
36:85–92. 2010.
|
67
|
Bornstein P: Thrombospondins function as
regulators of angiogenesis. J Cell Commun Signal. 3:189–200. 2009.
View Article : Google Scholar
|