1
|
American Cancer Society (online).
Available: http://www.cancer.org/cancer/endometrialcancer/detailedguide/endometrial-uterine-cancer-key-statistics
(updated Feb 3, 2014).
|
2
|
Yan Y, Liu H, Wen H, Jiang X, Cao X, Zhang
G and Liu G: The novel estrogen receptor GPER regulates the
migration and invasion of ovarian cancer cells. Mol Cell Biochem.
378:1–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tsai CL, Wu HM, Lin CY, Lin YJ, Chao A,
Wang TH, Hsueh S, Lai CH and Wang HS: Estradiol and tamoxifen
induce cell migration through GPR30 and activation of focal
adhesion kinase (FAK) in endometrial cancers with low or without
nuclear estrogen receptor α (ERα). PLoS One. 8:e729992013.
View Article : Google Scholar
|
4
|
Flamini MI, Sanchez AM, Goglia L, Tosi V,
Genazzani AR and Simoncini T: Differential actions of estrogen and
SERMs in regulation of the actin cytoskeleton of endometrial cells.
Mol Hum Reprod. 15:675–685. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gentilini D, Busacca M, Di Francesco S,
Vignali M, Viganò P and Di Blasio AM: PI3K/Akt and ERK1/2
signalling pathways are involved in endometrial cell migration
induced by 17beta-estradiol and growth factors. Mol Hum Reprod.
13:317–322. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Acconcia F, Barnes CJ and Kumar R:
Estrogen and tamoxifen induce cytoskeletal remodeling and migration
in endometrial cancer cells. Endocrinology. 147:1203–1212. 2006.
View Article : Google Scholar
|
7
|
Tabibzadeh S and Babaknia A: The signals
and molecular pathways involved in implantation, a symbiotic
interaction between blastocyst and endometrium involving adhesion
and tissue invasion. Hum Reprod. 10:1579–1602. 1995. View Article : Google Scholar : PubMed/NCBI
|
8
|
Turksen K and Troy TC: Barriers built on
claudins. J Cell Sci. 117:2435–2447. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schneeberger EE and Lynch RD: The tight
junction: A multi-functional complex. Am J Physiol Cell Physiol.
286:C1213–C1228. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pan XY, Wang B, Che YC, Weng ZP, Dai HY
and Peng W: Expression of claudin-3 and clauding-4 in normal,
hyperplastic, and malignant endometrial tissue. Int J Gynecol
Cancer. 17:233–241. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Santin AD, Bellone S, Siegel ER, McKenney
JK, Thomas M, Roman JJ, Burnett A, Tognon G, Bandiera E and
Pecorelli S: Overexpression of Clostridium perfringens enterotoxin
receptors claudin-3 and claudin-4 in uterine carcinosarcomas. Clin
Cancer Res. 13:3339–3346. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Konecny GE, Agarwal R, Keeney GA,
Winterhoff B, Jones MB, Mariani A, Riehle D, Neuper C, Dowdy SC,
Wang HJ, et al: Claudin-3 and claudin-4 expression in serous
papillary, clear-cell, and endometrioid endometrial cancer. Gynecol
Oncol. 109:263–269. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gaetje R, Holtrich U, Engels K, Kissler S,
Rody A, Karn T and Kaufmann M: Differential expression of claudins
in human endometrium and endometriosis. Gynecol Endocrinol.
24:442–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pan XY, Li X, Weng ZP and Wang B: Altered
expression of claudin-3 and claudin-4 in ectopic endometrium of
women with endometriosis. Fertil Steril. 91:1692–1699. 2009.
View Article : Google Scholar
|
15
|
Seth P, Porter D, Lahti-Domenici J, Geng
Y, Richardson A and Polyak K: Cellular and molecular targets of
estrogen in normal human breast tissue. Cancer Res. 62:4540–4544.
2002.PubMed/NCBI
|
16
|
Gadal F, Starzec A, Bozic C,
Pillot-Brochet C, Malinge S, Ozanne V, Vicenzi J, Buffat L, Perret
G, Iris F, et al: Integrative analysis of gene expression patterns
predicts specific modulations of defined cell functions by estrogen
and tamoxifen in MCF7 breast cancer cells. J Mol Endocrinol.
34:61–75. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Morin PJ: Claudin proteins in human
cancer: Promising new targets for diagnosis and therapy. Cancer
Res. 65:9603–9606. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Someya M, Kojima T, Ogawa M, Ninomiya T,
Nomura K, Takasawa A, Murata M, Tanaka S, Saito T and Sawada N:
Regulation of tight junctions by sex hormones in normal human
endometrial epithelial cells and uterus cancer cell line Sawano.
Cell Tissue Res. 354:481–494. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zeng R, Li X and Gorodeski GI: Estrogen
abrogates trans-cervical tight junctional resistance by
acceleration of occluding modulation. J Clin Endocrinol Metab.
89:5145–5155. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhu Y, Brännström M, Janson PO and
Sundfeldt K: Differences in expression patterns of the tight
junction proteins, claudin 1, 3, 4 and 5, in human ovarian surface
epithelium as compared to epithelia in inclusion cysts and
epithelial ovarian tumours. Int J Cancer. 118:1884–1891. 2006.
View Article : Google Scholar
|
21
|
Leotlela PD, Wade MS, Duray PH, Rhode MJ,
Brown HF, Rosenthal DT, Dissanayake SK, Earley R, Indig FE,
Nickoloff BJ, et al: Claudin-1 overexpression in melanoma is
regulated by PKC and contributes to melanoma cell motility.
Oncogene. 26:3846–3856. 2007. View Article : Google Scholar
|
22
|
Lejeune M, Moreau F and Chadee K:
Prostaglandin E2 produced by Entamoeba histolytica signals via EP4
receptor and alters claudin-4 to increase ion permeability of tight
junctions. Am J Pathol. 179:807–818. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
D’Souza T, Indig FE and Morin PJ:
Phosphorylation of claudin-4 by PKCepsilon regulates tight junction
barrier function in ovarian cancer cells. Exp Cell Res.
313:3364–3375. 2007. View Article : Google Scholar
|
24
|
Tanaka M, Kamata R and Sakai R: EphA2
phosphorylates the cytoplasmic tail of Claudin-4 and mediates
paracellular permeability. J Biol Chem. 280:42375–42382. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
French AD, Fiori JL, Camilli TC, Leotlela
PD, O’Connell MP, Frank BP, Subaran S, Indig FE, Taub DD and
Weeraratna AT: PKC and PKA phosphorylation affect the subcellular
localization of claudin-1 in melanoma cells. Int J Med Sci.
6:93–101. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Matsuda M, Kubo A, Furuse M and Tsukita S:
A peculiar internalization of claudins, tight junction-specific
adhesion molecules, during the intercellular movement of epithelial
cells. J Cell Sci. 117:1247–1257. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li J, Sherman-Baust CA, Tsai-Turton M,
Bristow RE, Roden RB and Morin PJ: Claudin-containing exosomes in
the peripheral circulation of women with ovarian cancer. BMC
Cancer. 9:2442009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dhawan P, Singh AB, Deane NG, No Y, Shiou
SR, Schmidt C, Neff J, Washington MK and Beauchamp RD: Claudin-1
regulates cellular transformation and metastatic behavior in colon
cancer. J Clin Invest. 115:1765–1776. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Heiskala M, Peterson PA and Yang Y: The
roles of claudin superfamily proteins in paracellular transport.
Traffic. 2:93–98. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Santin AD, Bellone S, Marizzoni M,
Palmieri M, Siegel ER, McKenney JK, Hennings L, Comper F, Bandiera
E and Pecorelli S: Overexpression of claudin-3 and claudin-4
receptors in uterine serous papillary carcinoma: novel targets for
a type-specific therapy using Clostridium perfringens enterotoxin
(CPE). Cancer. 109:1312–1322. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Veshnyakova A, Protze J, Rossa J, Blasig
IE, Krause G and Piontek J: On the interaction of Clostridium
perfringens enterotoxin with claudins. Toxins (Basel). 2:1336–1356.
2010. View Article : Google Scholar
|
32
|
Szasz AM, Nemeth Z, Gyorffy B, Micsinai M,
Krenacs T, Baranyai Z, Harsanyi L, Kiss A, Schaff Z, Tökés AM, et
al: Identification of a claudin-4 and E-cadherin score to predict
prognosis in breast cancer. Cancer Sci. 102:2248–2254. 2011.
View Article : Google Scholar : PubMed/NCBI
|