1
|
Shao C, Lu C, Chen L, Koty PP, Cobos E and
Gao W: p53-dependent anticancer effects of leptomycin B on lung
adenocarcinoma. Cancer Chemother Pharmacol. 67:1369–1380. 2011.
View Article : Google Scholar
|
2
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Steeg PS: Metastasis suppressors alter the
signal transduction of cancer cells. Nat Rev Cancer. 3:55–63. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Ambros V and Chen X: The regulation of
genes and genomes by small RNAs. Development. 134:1635–1641. 2007.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ma L, Young J, Prabhala H, Pan E, Mestdagh
P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S,
et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin
and cancer metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI
|
6
|
Ma L: Role of miR-10b in breast cancer
metastasis. Breast Cancer Res. 12:2102010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Zhang Y, Zhang W, Jia S, Tian R,
Kang Y, Ma Y and Li D: Genetic heterogeneity of breast cancer
metastasis may be related to miR-21 regulation of TIMP-3 in
translation. Int J Surg Oncol. 2013:8750782013.PubMed/NCBI
|
8
|
Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y,
Li C, Chong M, Ibrahim T, Mercatali L, et al: miR-126 and
miR-126* repress recruitment of mesenchymal stem cells
and inflammatory monocytes to inhibit breast cancer metastasis. Nat
Cell Biol. 15:284–294. 2013. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Liu S, Howell PM and Riker AI:
Up-regulation of miR-182 expression after epigenetic modulation of
human melanoma cells. Ann Surg Oncol. 20:1745–1752. 2013.
View Article : Google Scholar
|
10
|
Nass D, Rosenwald S, Meiri E, Gilad S,
Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A,
Kharenko O, et al: MiR-92b and miR-9/9* are specifically
expressed in brain primary tumors and can be used to differentiate
primary from metastatic brain tumors. Brain Pathol. 19:375–383.
2009. View Article : Google Scholar :
|
11
|
Kristensen H, Haldrup C, Strand S,
Mundbjerg K, Mortensen MM, Thorsen K, Ostenfeld MS, Wild PJ, Arsov
C, Goering W, et al: Hypermethylation of the GABRE-miR-452-miR-224
promoter in prostate cancer predicts biochemical recurrence after
radical prostatectomy. Clin Cancer Res. 20:2169–2181. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Reis ST, Pontes-Junior J, Antunes AA,
Dall’Oglio MF, Dip N, Passerotti CC, Rossini GA, Morais DR,
Nesrallah AJ, Piantino C, et al: miR-21 may acts as an oncomir by
targeting RECK, a matrix metalloproteinase regulator, in prostate
cancer. BMC Urol. 12:142012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bullock MD, Pickard KM, Nielsen BS, Sayan
AE, Jenei V, Mellone M, Mitter R, Primrose JN, Thomas GJ, Packham
GK, et al: Pleiotropic actions of miR-21 highlight the critical
role of deregulated stromal microRNAs during colorectal cancer
progression. Cell Death Dis. 4:e6842013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang HY, Zheng SQ, Tu YS and Zhang YJ:
Bioinformatics analysis of metastasis-related miR-29b. Chin J Clin
Oncol. 41:1021–1025. 2014.
|
15
|
Hou Y, Zou Q, Ge R, Shen F and Wang Y: The
critical role of CD133(+)CD44(+/high) tumor cells in hematogenous
metastasis of liver cancers. Cell Res. 22:259–272. 2012. View Article : Google Scholar :
|
16
|
Angelastro JM and Lamé MW: Overexpression
of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer
Res. 8:1105–1115. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
He A, Qi W, Huang Y, Feng T, Chen J, Sun
Y, Shen Z and Yao Y: CD133 expression predicts lung metastasis and
poor prognosis in osteosarcoma patients: A clinical and
experimental study. Exp Ther Med. 4:435–441. 2012.PubMed/NCBI
|
18
|
Kim ST, Sohn I, Do IG, Jang J, Kim SH,
Jung IH, Park JO, Park YS, Talasaz A, Lee J, et al: Transcriptome
analysis of CD133-positive stem cells and prognostic value of
survivin in colorectal cancer. Cancer Genomics Proteomics.
11:259–266. 2014.PubMed/NCBI
|
19
|
Mizugaki H, Sakakibara-Konishi J, Kikuchi
J, Moriya J, Hatanaka KC, Kikuchi E, Kinoshita I, Oizumi S,
Dosaka-Akita H, Matsuno Y, et al: CD133 expression: A potential
prognostic marker for non-small cell lung cancers. Int J Clin
Oncol. 19:254–259. 2014. View Article : Google Scholar
|
20
|
Wu DW, Hsu NY, Wang YC, Lee MC, Cheng YW,
Chen CY and Lee H: c-Myc suppresses microRNA-29b to promote tumor
aggressiveness and poor outcomes in non-small cell lung cancer by
targeting FHIT. Oncogene. Jun 9–2014.(Epub ahead of print).
View Article : Google Scholar
|
21
|
Wang B, Li W, Liu H, Yang L, Liao Q, Cui
S, Wang H and Zhao L: miR-29b suppresses tumor growth and
metastasis in colorectal cancer via downregulating Tiam1 expression
and inhibiting epithelial-mesenchymal transition. Cell Death Dis.
5:e13352014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zheng JJ, Yu FJ, Dong PH, Bai YH and Chen
BC: Expression of miRNA-29b and its clinical significances in
primary hepatic carcinoma. Zhonghua Yi Xue Za Zhi. 93:888–891.
2013.(In Chinese). PubMed/NCBI
|
23
|
Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix
MJ, Wu R and Wu CW: Selection of invasive and metastatic
subpopulations from a human lung adenocarcinoma cell line. Am J
Respir Cell Mol Biol. 17:353–360. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S,
Guo X, Wang B, Gang Y, Zhang Y, et al: MiR-218 inhibits invasion
and metastasis of gastric cancer by targeting the Robo1 receptor.
PLoS Genet. 6:e10008792010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chang DK, Lin CT, Wu CH and Wu HC: A novel
peptide enhances therapeutic efficacy of liposomal anti-cancer
drugs in mice models of human lung cancer. PLoS One. 4:e41712009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Torng PL, Lee YC, Huang CY, Ye JH, Lin YS,
Chu YW, Huang SC, Cohen P, Wu CW and Lin CT: Insulin-like growth
factor binding protein-3 (IGFBP-3) acts as an invasion-metastasis
suppressor in ovarian endometrioid carcinoma. Oncogene.
27:2137–2147. 2008. View Article : Google Scholar
|
27
|
Yu SL, Chen HY, Chang GC, Chen CY, Chen
HW, Singh S, Cheng CL, Yu CJ, Lee YC, Chen HS, et al: MicroRNA
signature predicts survival and relapse in lung cancer. Cancer
Cell. 13:48–57. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen YC, Hsu HS, Chen YW, Tsai TH, How CK,
Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, et al: Oct-4
expression maintained cancer stem-like properties in lung
cancer-derived CD133-positive cells. PLoS One. 3:e26372008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Qian Q, Wang Q, Zhan P, Peng L, Wei SZ,
Shi Y and Song Y: The role of matrix metalloproteinase 2 on the
survival of patients with non-small cell lung cancer: A systematic
review with meta-analysis. Cancer Invest. 28:661–669. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fang JH, Zhou HC, Zeng C, Yang J, Liu Y,
Huang X, Zhang JP, Guan XY and Zhuang SM: MicroRNA-29b suppresses
tumor angiogenesis, invasion, and metastasis by regulating matrix
metalloproteinase 2 expression. Hepatology. 54:1729–1740. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Gebeshuber CA, Zatloukal K and Martinez J:
miR-29a suppresses tristetraprolin, which is a regulator of
epithelial polarity and metastasis. EMBO Rep. 10:400–405. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Kuo CH, Goldberg MD, Lin SL, Ying SY and
Zhong JF: Identify intronic microRNA with bioinformatics. Methods
Mol Biol. 936:77–82. 2013. View Article : Google Scholar
|
33
|
Beck H, Flynn K, Lindenberg KS, Schwarz H,
Bradke F, Di Giovanni S and Knöll B: Serum response factor
(SRF)-cofilin-actin signaling axis modulates mitochondrial
dynamics. Proc Natl Acad Sci USA. 109:E2523–E2532. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee HJ, Yun CH, Lim SH, Kim BC, Baik KG,
Kim JM, Kim WH and Kim SJ: SRF is a nuclear repressor of
Smad3-mediated TGF-beta signaling. Oncogene. 26:173–185. 2007.
View Article : Google Scholar
|
35
|
Choi HN, Kim KR, Lee JH, Park HS, Jang KY,
Chung MJ, Hwang SE, Yu HC and Moon WS: Serum response factor
enhances liver metastasis of colorectal carcinoma via alteration of
the E-cadherin/beta-catenin complex. Oncol Rep. 21:57–63. 2009.
|
36
|
Kim KR, Bae JS, Choi HN, Park HS, Jang KY,
Chung MJ and Moon WS: The role of serum response factor in
hepatocellular carcinoma: An association with matrix
metalloproteinase. Oncol Rep. 26:1567–1572. 2011.PubMed/NCBI
|
37
|
Verone AR, Duncan K, Godoy A, Yadav N,
Bakin A, Koochekpour S, Jin JP and Heemers HV: Androgen-responsive
serum response factor target genes regulate prostate cancer cell
migration. Carcinogenesis. 34:1737–1746. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Walker T, Nolte A, Steger V, Makowiecki C,
Mustafi M, Friedel G, Schlensak C and Wendel HP: Small interfering
RNA-mediated suppression of serum response factor, E2-promotor
binding factor and survivin in non-small cell lung cancer cell
lines by non-viral transfection. Eur J Cardiothorac Surg.
43:628–634. 2013. View Article : Google Scholar
|
39
|
Zhao X, He L, Li T, Lu Y, Miao Y, Liang S,
Guo H, Bai M, Xie H, Luo G, et al: SRF expedites metastasis and
modulates the epithelial to mesenchymal transition by regulating
miR-199a-5p expression in human gastric cancer. Cell Death Differ.
21:1900–1913. 2014. View Article : Google Scholar : PubMed/NCBI
|