The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review)
- Authors:
- Hua-Fu Zhao
- Jing Wang
- Shing-Shun Tony To
-
Affiliations: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, P.R. China, Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China - Published online on: June 16, 2015 https://doi.org/10.3892/ijo.2015.3052
- Pages: 429-436
This article is mentioned in:
Abstract
Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI | |
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J and Waterfield MD: Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vanhaesebroeck B and Alessi DR: The PI3K-PDK1 connection: More than just a road to PKB. Biochem J. 346:561–576. 2000. View Article : Google Scholar : PubMed/NCBI | |
Toker A and Newton AC: Cellular signaling: Pivoting around PDK-1. Cell. 103:185–188. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Ali SM and Sabatini DM: Growing roles for the mTOR pathway. Curr Opin Cell Biol. 17:596–603. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vivanco I and Sawyers CL: The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X and Wu H: PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA. 96:6199–6204. 1999. View Article : Google Scholar : PubMed/NCBI | |
Song MS, Salmena L and Pandolfi PP: The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 13:283–296. 2012.PubMed/NCBI | |
Srividya MR, Thota B, Shailaja BC, Arivazhagan A, Thennarasu K, Chandramouli BA, Hegde AS and Santosh V: Homozygous 10q23/ PTEN deletion and its impact on outcome in glioblastoma: A prospective translational study on a uniformly treated cohort of adult patients. Neuropathology. 31:376–383. 2011. View Article : Google Scholar | |
Chong ML, Loh M, Thakkar B, Pang B, Iacopetta B and Soong R: Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: Meta-analysis, co-occurrence and ethnic variation. Int J Cancer. 134:1232–1238. 2014. View Article : Google Scholar | |
Garcia-Dios DA, Lambrechts D, Coenegrachts L, Vandenput I, Capoen A, Webb PM, Ferguson K, Akslen LA, Claes B, Vergote I, et al; ANECS. High-throughput interrogation of PIK3CA, PTEN, KRAS, FBXW7 and TP53 mutations in primary endometrial carcinoma. Gynecol Oncol. 128:327–334. 2013. View Article : Google Scholar | |
McConechy MK, Ding J, Senz J, Yang W, Melnyk N, Tone AA, Prentice LM, Wiegand KC, McAlpine JN, Shah SP, et al: Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol. 27:128–134. 2014. View Article : Google Scholar : | |
Jin G, Kim MJ, Jeon HS, Choi JE, Kim DS, Lee EB, Cha SI, Yoon GS, Kim CH and Jung TH: PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer. 69:279–283. 2010. View Article : Google Scholar | |
Kang-Park S and Lee YI and Lee YI: PTEN modulates insulin-like growth factor II (IGF-II)-mediated signaling; the protein phosphatase activity of PTEN downregulates IGF-II expression in hepatoma cells. FEBS Lett. 545:203–208. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yi HK, Kim SY, Hwang PH, Kim CY, Yang DH, Oh Y and Lee DY: Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells. Biochem Biophys Res Commun. 330:760–767. 2005. View Article : Google Scholar : PubMed/NCBI | |
Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, et al: Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer. 117:376–380. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tang JM, He QY, Guo RX and Chang XJ: Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 51:181–191. 2006. View Article : Google Scholar | |
Vivanco I, Rohle D, Versele M, Iwanami A, Kuga D, Oldrini B, Tanaka K, Dang J, Kubek S, Palaskas N, et al: The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proc Natl Acad Sci USA. 107:6459–6464. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weston CR and Davis RJ: The JNK signal transduction pathway. Curr Opin Cell Biol. 19:142–149. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bode AM and Dong Z: The functional contrariety of JNK. Mol Carcinog. 46:591–598. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang JY, Moulin N, van Bemmelen MX, Dubuis G, Tawadros T, Haefliger JA, Waeber G and Widmann C: Splice variant-specific stabilization of JNKs by IB1/JIP1. Cell Signal. 19:2201–2207. 2007. View Article : Google Scholar : PubMed/NCBI | |
Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell. 103:239–252. 2000. View Article : Google Scholar : PubMed/NCBI | |
Barr RK and Bogoyevitch MA: The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int J Biochem Cell Biol. 33:1047–1063. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tournier C, Dong C, Turner TK, Jones SN, Flavell RA and Davis RJ: MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15:1419–1426. 2001. View Article : Google Scholar : PubMed/NCBI | |
Haeusgen W, Herdegen T and Waetzig V: The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol. 90:536–544. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M and Tzivion G: Raf kinases: Function, regulation and role in human cancer. Biochim Biophys Acta. 1773:1196–1212. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K and Gotoh Y: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275:90–94. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sun BK, Kim JH, Nguyen HN, Oh S, Kim SY, Choi S, Choi HJ, Lee YJ and Song JJ: MEKK1/MEKK4 are responsible for TRAIL-induced JNK/p38 phosphorylation. Oncol Rep. 25:537–544. 2011. | |
Xu Z, Maroney AC, Dobrzanski P, Kukekov NV and Greene LA: The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol. 21:4713–4724. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Ilasaca M: Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem Pharmacol. 56:269–277. 1998. View Article : Google Scholar : PubMed/NCBI | |
Shaulian E: AP-1 - The Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 22:894–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J and Davis RJ: A mammalian scaffold complex that selectively mediates MAP kinase activation. Science. 281:1671–1674. 1998. View Article : Google Scholar : PubMed/NCBI | |
Whitmarsh AJ, Kuan CY, Kennedy NJ, Kelkar N, Haydar TF, Mordes JP, Appel M, Rossini AA, Jones SN, Flavell RA, et al: Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15:2421–2432. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nihalani D, Meyer D, Pajni S and Holzman LB: Mixed lineage kinase-dependent JNK activation is governed by interactions of scaffold protein JIP with MAPK module components. EMBO J. 20:3447–3458. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lin A: Activation of the JNK signaling pathway: Breaking the brake on apoptosis. BioEssays. 25:17–24. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin A and Dibling B: The true face of JNK activation in apoptosis. Aging Cell. 1:112–116. 2002. View Article : Google Scholar | |
Besirli CG and Johnson EM Jr: JNK-independent activation of c-Jun during neuronal apoptosis induced by multiple DNA-damaging agents. J Biol Chem. 278:22357–22366. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS and Lewcock JW: JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J Cell Biol. 202:747–763. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reno EM, Haughian JM, Jackson TA, Thorne AM and Bradford AP: c-Jun N-terminal kinase regulates apoptosis in endometrial cancer cells. Apoptosis. 14:809–820. 2009. View Article : Google Scholar : PubMed/NCBI | |
Robitaille K, Daviau A, Lachance G, Couture JP and Blouin R: Calphostin C-induced apoptosis is mediated by a tissue trans-glutaminase-dependent mechanism involving the DLK/JNK signaling pathway. Cell Death Differ. 15:1522–1531. 2008. View Article : Google Scholar : PubMed/NCBI | |
Song J, Ko HS, Sohn EJ, Kim B, Kim JH, Kim HJ, Kim C, Kim JE and Kim SH: Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells. Bioorg Med Chem Lett. 24:1188–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim BJ, Ryu SW and Song BJ: JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 281:21256–21265. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS and Cregan SP: The JNK- and AKT/GSK3β-signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One. 7:e468852012. View Article : Google Scholar | |
Zhao Z, Wang J, Tang J, Liu X, Zhong Q, Wang F, Hu W, Yuan Z, Nie C and Wei Y: JNK- and Akt-mediated Puma expression in the apoptosis of cisplatin-resistant ovarian cancer cells. Biochem J. 444:291–301. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yu J and Zhang L: PUMA, a potent killer with or without p53. Oncogene. 27(Suppl 1): S71–S83. 2008. View Article : Google Scholar | |
Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S, Fried VA, Minamoto T, Alarcon-Vargas D, Pincus MR, et al: Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol. 21:2743–2754. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jones EV, Dickman MJ and Whitmarsh AJ: Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J. 405:617–623. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J and Lin A: JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell. 13:329–340. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nishina H, Fischer KD, Radvanyi L, Shahinian A, Hakem R, Rubie EA, Bernstein A, Mak TW, Woodgett JR and Penninger JM: Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature. 385:350–353. 1997. View Article : Google Scholar : PubMed/NCBI | |
Potapova O, Gorospe M, Dougherty RH, Dean NM, Gaarde WA and Holbrook NJ: Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner. Mol Cell Biol. 20:1713–1722. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cellurale C, Sabio G, Kennedy NJ, Das M, Barlow M, Sandy P, Jacks T and Davis RJ: Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol. 31:1565–1576. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiao L and Lang W: A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res. 60:400–408. 2000.PubMed/NCBI | |
Nielsen C, Thastrup J, Bøttzauw T, Jäättelä M and Kallunki T: c-Jun NH2-terminal kinase 2 is required for Ras transformation independently of activator protein 1. Cancer Res. 67:178–185. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mathiasen DP, Egebjerg C, Andersen SH, Rafn B, Puustinen P, Khanna A, Daugaard M, Valo E, Tuomela S, Bøttzauw T, et al: Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation. Oncogene. 31:390–401. 2012. View Article : Google Scholar | |
Johnson R, Spiegelman B, Hanahan D and Wisdom R: Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol. 16:4504–4511. 1996.PubMed/NCBI | |
Shibata W, Maeda S, Hikiba Y, Yanai A, Sakamoto K, Nakagawa H, Ogura K, Karin M and Omata M: c-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice. Cancer Res. 68:5031–5039. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chang Q, Chen J, Beezhold KJ, Castranova V, Shi X and Chen F: JNK1 activation predicts the prognostic outcome of the human hepatocellular carcinoma. Mol Cancer. 8:642009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Chao L, Li X, Ma G, Chen L, Zang Y and Zhou G: Elevated expression of phosphorylated c-Jun NH2-terminal kinase in basal-like and ‘triple-negative’ breast cancers. Hum Pathol. 41:401–406. 2010. View Article : Google Scholar | |
Li JY and Wang H, May S, Song X, Fueyo J, Fuller GN and Wang H: Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol. 88:11–17. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takahashi R, Hirata Y, Sakitani K, Nakata W, Kinoshita H, Hayakawa Y, Nakagawa H, Sakamoto K, Hikiba Y, Ijichi H, et al: Therapeutic effect of c-Jun N-terminal kinase inhibition on pancreatic cancer. Cancer Sci. 104:337–344. 2013. View Article : Google Scholar | |
Chen P, O’Neal JF, Ebelt ND, Cantrell MA, Mitra S, Nasrazadani A, Vandenbroek TL, Heasley LE and Van Den Berg CL: Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model. PLoS One. 5:e104432010. View Article : Google Scholar : PubMed/NCBI | |
Das M, Garlick DS, Greiner DL and Davis RJ: The role of JNK in the development of hepatocellular carcinoma. Genes Dev. 25:634–645. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA and Davis RJ: Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev. 17:629–637. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hübner A, Mulholland DJ, Standen CL, Karasarides M, Cavanagh-Kyros J, Barrett T, Chi H, Greiner DL, Tournier C, Sawyers CL, et al: JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci USA. 109:12046–12051. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ying J, Li H, Cui Y, Wong AH, Langford C and Tao Q: Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia. 20:1173–1175. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoshida S, Fukino K, Harada H, Nagai H, Imoto I, Inazawa J, Takahashi H, Teramoto A and Emi M: The c-Jun NH2-terminal kinase3 (JNK3) gene: Genomic structure, chromosomal assignment, and loss of expression in brain tumors. J Hum Genet. 46:182–187. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jurewicz A, Matysiak M, Tybor K and Selmaj K: TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3. Brain. 126:1358–1370. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dajas-Bailador F, Bantounas I, Jones EV and Whitmarsh AJ: Regulation of axon growth by the JIP1-AKT axis. J Cell Sci. 127:230–239. 2014. View Article : Google Scholar : | |
Kim AH, Sasaki T and Chao MV: JNK-interacting protein 1 promotes Akt1 activation. J Biol Chem. 278:29830–29836. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pan J, Pei DS, Yin XH, Hui L and Zhang GY: Involvement of oxidative stress in the rapid Akt1 regulating a JNK scaffold during ischemia in rat hippocampus. Neurosci Lett. 392:47–51. 2006. View Article : Google Scholar | |
Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B, Birnbaum MJ and Chao MV: Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron. 35:697–709. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cerezo A, Martínez-A C, Lanzarot D, Fischer S, Franke TF and Rebollo A: Role of Akt and c-Jun N-terminal kinase 2 in apoptosis induced by interleukin-4 deprivation. Mol Biol Cell. 9:3107–3118. 1998. View Article : Google Scholar : PubMed/NCBI | |
Levresse V, Butterfield L, Zentrich E and Heasley LE: Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. J Neurosci Res. 62:799–808. 2000. View Article : Google Scholar : PubMed/NCBI | |
Okubo Y, Blakesley VA, Stannard B, Gutkind S and Le Roith D: Insulin-like growth factor-I inhibits the stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem. 273:25961–25966. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang QG, Wu DN, Yin XH and Zhang GY: Neuroprotection of selenite against ischemic brain injury through negatively regulating early activation of ASK1/JNK cascade via activation of PI3K/AKT pathway. Acta Pharmacol Sin. 28:19–27. 2007. View Article : Google Scholar | |
Kim AH, Khursigara G, Sun X, Franke TF and Chao MV: Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol. 21:893–901. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aikin R, Maysinger D and Rosenberg L: Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology. 145:4522–4531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L, Vessella RL, Min W and Hsieh JT: DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci USA. 106:19878–19883. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park HS, Kim MS, Huh SH, Park J, Chung J, Kang SS and Choi EJ: Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. J Biol Chem. 277:2573–2578. 2002. View Article : Google Scholar | |
Murakami T, Takagi H, Suzuma K, Suzuma I, Ohashi H, Watanabe D, Ojima T, Suganami E, Kurimoto M, Kaneto H, et al: Angiopoietin-1 attenuates H2O2-induced SEK1/JNK phosphorylation through the phosphatidylinositol 3-kinase/Akt pathway in vascular endothelial cells. J Biol Chem. 280:31841–31849. 2005. View Article : Google Scholar : PubMed/NCBI | |
Barthwal MK, Sathyanarayana P, Kundu CN, Rana B, Pradeep A, Sharma C, Woodgett JR and Rana A: Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival. J Biol Chem. 278:3897–3902. 2003. View Article : Google Scholar | |
Wen XR, Li C, Zong YY, Yu CZ, Xu J, Han D and Zhang GY: Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury. Neuroscience. 156:483–497. 2008. View Article : Google Scholar : PubMed/NCBI | |
Song JJ and Lee YJ: Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: A negative feedback loop. J Cell Biol. 170:61–72. 2005. View Article : Google Scholar : PubMed/NCBI | |
Logan SK, Falasca M, Hu P and Schlessinger J: Phosphatidylinositol 3-kinase mediates epidermal growth factor-induced activation of the c-Jun N-terminal kinase signaling pathway. Mol Cell Biol. 17:5784–5790. 1997.PubMed/NCBI | |
Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, et al: Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell. 11:555–569. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Han SY, Wang C, Su W, Harshyne L, Holgado-Madruga M and Wong AJ: c-Jun NH(2)-terminal kinase 2alpha2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res. 66:10024–10031. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tsuiki H, Tnani M, Okamoto I, Kenyon LC, Emlet DR, Holgado-Madruga M, Lanham IS, Joynes CJ, Vo KT and Wong AJ: Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res. 63:250–255. 2003.PubMed/NCBI | |
Nitta RT, Del Vecchio CA, Chu AH, Mitra SS, Godwin AK and Wong AJ: The role of the c-Jun N-terminal kinase 2-α-isoform in non-small cell lung carcinoma tumorigenesis. Oncogene. 30:234–244. 2011. View Article : Google Scholar | |
Antonyak MA, Kenyon LC, Godwin AK, James DC, Emlet DR, Okamoto I, Tnani M, Holgado-Madruga M, Moscatello DK and Wong AJ: Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene. 21:5038–5046. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bost F, McKay R, Bost M, Potapova O, Dean NM and Mercola D: The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol. 19:1938–1949. 1999.PubMed/NCBI | |
Rong Y, Belozerov VE, Tucker-Burden C, Chen G, Durden DL, Olson JJ, Van Meir EG, Mackman N and Brat DJ: Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res. 69:2540–2549. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bonavia R, Inda MM, Vandenberg S, Cheng SY, Nagane M, Hadwiger P, Tan P, Sah DW, Cavenee WK and Furnari FB: EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene. 31:4054–4066. 2012. View Article : Google Scholar | |
Gu J, Tamura M and Yamada KM: Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol. 143:1375–1383. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hettinger K, Vikhanskaya F, Poh MK, Lee MK, de Belle I, Zhang JT, Reddy SA and Sabapathy K: c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ. 14:218–229. 2007. View Article : Google Scholar |