1
|
Di Pietro R, Falcieri E, Centurione L,
Centurione MA, Mazzotti G and Rana R: Ultrastructural patterns of
cell damage and death following gamma radiation exposure of murine
erythroleukemia cells. Scanning Microsc. 8:667–673. 1994.PubMed/NCBI
|
2
|
Di Pietro R, Centurione L, Santavenere E,
Centurione MA, Sanità Di Toppi G, Zamai L and Rana R: Ionizing
radiation-induced apoptosis and DNA repair in murine
erythroleukemia cells. Scanning Microsc. 10:253–259.
1996.PubMed/NCBI
|
3
|
Suzuki K and Yamashita S: Low-dose
radiation exposure and carcinogenesis. Jpn J Clin Oncol.
42:563–568. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Miscia S, Di Baldassarre A, Alba Rana R,
Di Pietro R and Cataldi A: Engagement of DNA polymerases during
apoptosis. Cell Prolif. 30:325–340. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cataldi A, Zauli G, Di Pietro R, Castorina
S and Rana RA: Involvement of the pathway PI-3-kinase/AKT 1 in the
establishment of the survival response to ionising radiation. Cell
Signal. 13:1–7. 2001.
|
6
|
Cataldi A, di Giacomo V, Rapino M,
Genovesi D and Rana RA: Cyclic nucleotide response element binding
protein (CREB) activation promotes survival signal in human K562
erythroleukemia cells exposed to ionising radiation/etoposide
combined treatment. J Radiat Res (Tokyo). 47:113–120. 2006.
View Article : Google Scholar
|
7
|
Cataldi A, Di Giacomo V, Rapino M, Zara S
and Rana RA: Ionizing radiation induces apoptotic signal through
protein kinase Cdelta (delta) and survival signal through Akt and
cyclic-nucleotide response element-binding protein (CREB) in Jurkat
T cells. Biol Bull. 217:202–212. 2009.PubMed/NCBI
|
8
|
Miura Y: Oxidative stress,
radiation-adaptive responses, and aging. J Radiat Res (Tokyo).
45:357–372. 2004. View Article : Google Scholar
|
9
|
Di Pietro R, Fang H, Fields K, Miller S,
Flora M, Petricoin EC, Dveksler G, Rana RA and Grimley PM:
Peroxiredoxin genes are not induced in myeloid leukemia cells
exposed to ionizing radiation. Int J Immunopathol Pharmacol.
19:517–524. 2006.PubMed/NCBI
|
10
|
Shaywitz AJ and Greenberg ME: CREB: A
stimulus-induced transcription factor activated by a diverse array
of extracellular signals. Annu Rev Biochem. 68:821–861. 1999.
View Article : Google Scholar
|
11
|
Shi Y, Venkataraman SL, Dodson GE, Mabb
AM, LeBlanc S and Tibbetts RS: Direct regulation of CREB
transcriptional activity by ATM in response to genotoxic stress.
Proc Natl Acad Sci USA. 101:5898–5903. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang X, Odom DT, Koo SH, Conkright MD,
Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen
E, et al: Genome-wide analysis of cAMP-response element binding
protein occupancy, phosphorylation, and target gene activation in
human tissues. Proc Natl Acad Sci USA. 102:4459–4464. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Di Pietro R, di Giacomo V, Caravatta L,
Sancilio S, Rana RA and Cataldi A: Cyclic nucleotide response
element binding (CREB) protein activation is involved in K562
erythroleukemia cells differentiation. J Cell Biochem.
100:1070–1079. 2007. View Article : Google Scholar
|
14
|
Cho EC, Mitton B and Sakamoto KM: CREB and
leukemogenesis. Crit Rev Oncog. 16:37–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
D'Auria F and Di Pietro R: Role of CREB
protein family members in human haematological malignancies. Cancer
Treatment/Book 2. Gali-Muhtasib H: InTech; Rijeka, Croatia: pp.
201–226. 2013
|
16
|
Deng X, Elzey BD, Poulson JM, Morrison WB,
Ko SC, Hahn NM, Ratliff TL and Hu CD: Ionizing radiation induces
neuroendocrine differentiation of prostate cancer cells in vitro,
in vivo and in prostate cancer patients. Am J Cancer Res.
1:834–844. 2011.PubMed/NCBI
|
17
|
Klein G, Giovanella B, Westman A, Stehlin
JS and Mumford D: An EBV-genome-negative cell line established from
an American Burkitt lymphoma; receptor characteristics. EBV
infectibility and permanent conversion into EBV-positive sublines
by in vitro infection. Intervirology. 5:319–334. 1975.PubMed/NCBI
|
18
|
Skvortsova I, Popper BA, Skvortsov S,
Saurer M, Auer T, Moser R, Kamleitner H, Zwierzina H and Lukas P:
Pretreatment with rituximab enhances radiosensitivity of
non-Hodgkin's lymphoma cells. J Radiat Res (Tokyo). 46:241–248.
2005. View Article : Google Scholar
|
19
|
Sancilio S, Grill V and Di Pietro R: A
combined approach with rituximab plus anti-TRAIL-R agonistic
antibodies for the treatment of haematological malignancies. Curr
Pharm Des. 14:2085–2099. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Impicciatore G, Sancilio S, Miscia S and
Di Pietro R: Nutlins and ionizing radiation in cancer therapy. Curr
Pharm Des. 16:1427–1442. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Camus S, Higgins M, Lane DP and Lain S:
Differences in the ubiquitination of p53 by Mdm2 and the HPV
protein E6. FEBS Lett. 536:220–224. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ben-Bassat H, Goldblum N, Mitrani S, Klein
G and Johansson B: Concanavalin A receptors on the surface membrane
of lymphocytes from patients with African Burkitt's lymphoma and
lymphoma cell lines. Int J Cancer. 17:448–454. 1976. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sancilio S, Di Giacomo V, Quaglietta AM,
Iacone A, Angelucci D, Tatasciore U, Rana RA, Cataldi A, Zauli G
and Di Pietro R: TRAIL promotes a pro-survival signal in
erythropoietin-deprived human erythroblasts through the activation
of an NF-kB/IkBalpha pathway. J Biol Regul Homeost Agents.
25:375–386. 2011.PubMed/NCBI
|
24
|
Caravatta L, Sancilio S, di Giacomo V,
Rana R, Cataldi A and Di Pietro R and Di Pietro R:
PI3-K/Akt-dependent activation of cAMP-response element-binding
(CREB) protein in Jurkat T leukemia cells treated with TRAIL. J
Cell Physiol. 214:192–200. 2008. View Article : Google Scholar
|
25
|
Campbell BA, Connors JM, Gascoyne RD,
Morris WJ, Pickles T and Sehn LH: Limited-stage diffuse large
B-cell lymphoma treated with abbreviated systemic therapy and
consolidation radiotherapy: Involved-field versus involved-node
radiotherapy. Cancer. 118:4156–4165. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zauli G, Sancilio S, Cataldi A, Sabatini
N, Bosco D and Di Pietro R: PI-3K/Akt and NF-kappaB/IkappaBalpha
pathways are activated in Jurkat T cells in response to TRAIL
treatment. J Cell Physiol. 202:900–911. 2005. View Article : Google Scholar
|
27
|
Sabatini N, Di Pietro R, Rapino M,
Sancilio S, Comani S and Cataldi A: PI-3-kinase/NF-kappaB mediated
response of Jurkat T leukemic cells to two different
chemotherapeutic drugs, etoposide and TRAIL. J Cell Biochem.
93:301–311. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Dolcet X, Llobet D, Pallares J and
Matias-Guiu X: NF-κB in development and progression of human
cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Papazisis KT, Zambouli D, Kimoundri OT,
Papadakis ES, Vala V, Geromichalos GD, Voyatzi S, Markala D,
Destouni E, Boutis L, et al: Protein tyrosine kinase inhibitor,
genistein, enhances apoptosis and cell cycle arrest in K562 cells
treated with gamma-irradiation. Cancer Lett. 160:107–113. 2000.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cataldi A, Rapino M, Centurione L,
Sabatini N, Grifone G, Garaci F and Rana R: NF-kappaB activation
plays an anti-apoptotic role in human leukemic K562 cells exposed
to ionizing radiation. J Cell Biochem. 89:956–963. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pajonk F, Pajonk K and McBride WH:
Inhibition of NF-kappaB, clonogenicity, and radiosensitivity of
human cancer cells. J Natl Cancer Inst. 91:1956–1960. 1999.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Winters ZE, Ongkeko WM, Harris AL and
Norbury CJ: p53 regulates Cdc2 independently of inhibitory
phosphorylation to reinforce radiation-induced G2 arrest in human
cells. Oncogene. 17:673–684. 1998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sabatini N, Di Giacomo V, Rapino M, Rana
R, Garaci G and Cataldi A: JNK/p53 mediated cell death response in
K562 exposed to etoposide-ionizing radiation combined treatment. J
Cell Biochem. 95:611–619. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wuerzberger-Davis SM, Chang PY, Berchtold
C and Miyamoto S: Enhanced G2-M arrest by nuclear
factor-{kappa}B-dependent p21waf1/cip1 induction. Mol Cancer Res.
3:345–353. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Eleuterio E, Di Giuseppe F, Sulpizio M, di
Giacomo V, Rapino M, Cataldi A, Di Ilio C and Angelucci S: Proteome
analysis of X-ray irradiated human erythroleukemia cells. Biochim
Biophys Acta. 1784:611–620. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jin P, Gu Y and Morgan DO: Role of
inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in
human cells. J Cell Biol. 134:963–970. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pardo FS, Su M and Borek C: Cyclin D1
induced apoptosis maintains the integrity of the G1/S checkpoint
following ionizing radiation irradiation. Somat Cell Mol Genet.
22:135–144. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cheng L, Li L, Qiao X, Liu J and Yao X:
Functional characterization of the promoter of human kinetochore
protein HEC1: Novel link between regulation of the cell cycle
protein and CREB family transcription factors. Biochim Biophys
Acta. 1769:593–602. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mayr B and Montminy M: Transcriptional
regulation by the phosphorylation-dependent factor CREB. Nat Rev
Mol Cell Biol. 2:599–609. 2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Magné N, Toillon RA, Bottero V, Didelot C,
Houtte PV, Gérard JP and Peyron JF: NF-kappaB modulation and
ionizing radiation: Mechanisms and future directions for cancer
treatment. Cancer Lett. 231:158–168. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Beier F, Lee RJ, Taylor AC, Pestell RG and
LuValle P: Identification of the cyclin D1 gene as a target of
activating transcription factor 2 in chondrocytes. Proc Natl Acad
Sci USA. 96:1433–1438. 1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lau E and Ronai ZA: ATF2 - at the
crossroad of nuclear and cytosolic functions. J Cell Sci.
125:2815–2824. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kozakai N, Kikuchi E, Hasegawa M, Suzuki
E, Ide H, Miyajima A, Horiguchi Y, Nakashima J, Umezawa K,
Shigematsu N, et al: Enhancement of radiosensitivity by a unique
novel NF-κB inhibitor, DHMEQ, in prostate cancer. Br J Cancer.
107:652–657. 2012. View Article : Google Scholar : PubMed/NCBI
|