1
|
Nishikawa R: Standard therapy for
glioblastoma - a review of where we are. Neurol Med Chir (Tokyo).
50:713–719. 2010. View Article : Google Scholar
|
2
|
Kong D-S, Kim ST, Kim E-H, Lim DH, Kim WS,
Suh YL, Lee JI, Park K, Kim JH and Nam DH: Diagnostic dilemma of
pseudo-progression in the treatment of newly diagnosed
glioblastomas: The role of assessing relative cerebral blood flow
volume and oxygen-6-methylguanine-DNA methyltransferase promoter
methylation status. AJNR Am J Neuroradiol. 32:382–387. 2011.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Locke VL, Davey RA and Davey MW:
Modulation of drug and radiation resistance in small cell lung
cancer cells by paclitaxel. Anticancer Drugs. 14:523–531. 2003.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Pires IM, Olcina MM, Anbalagan S, Pollard
JR, Reaper PM, Charlton PA, McKenna WG and Hammond EM: Targeting
radiation-resistant hypoxic tumour cells through ATR inhibition. Br
J Cancer. 107:291–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hegi ME, Liu L, Herman JG, Stupp R, Wick
W, Weller M, Mehta MP and Gilbert MR: Correlation of
O6-methylguanine methyltransferase (MGMT) promoter methylation with
clinical outcomes in glioblastoma and clinical strategies to
modulate MGMT activity. J Clin Oncol. 26:4189–4199. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Happold C, Roth P, Wick W, Schmidt N,
Florea AM, Silginer M, Reifenberger G and Weller M: Distinct
molecular mechanisms of acquired resistance to temozolomide in
glioblastoma cells. J Neurochem. 122:444–455. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Goellner EM, Grimme B, Brown AR, Lin YC,
Wang XH, Sugrue KF, Mitchell L, Trivedi RN, Tang JB and Sobol RW:
Overcoming temozolomide resistance in glioblastoma via dual
inhibition of NAD+ biosynthesis and base excision
repair. Cancer Res. 71:2308–2317. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ramirez YP, Weatherbee JL, Wheelhouse RT
and Ross AH: Glioblastoma multiforme therapy and mechanisms of
resistance. Pharmaceuticals (Basel). 6:1475–1506. 2013. View Article : Google Scholar
|
9
|
Hehlgans S and Cordes N: Caveolin-1: An
essential modulator of cancer cell radio-and chemoresistance. Am J
Cancer Res. 1:521–530. 2011.PubMed/NCBI
|
10
|
Kim Y, Kim KH, Lee J, Lee YA, Kim M, Lee
SJ, Park K, Yang H, Jin J, Joo KM, et al: Wnt activation is
implicated in glioblastoma radioresistance. Lab Invest. 92:466–473.
2012. View Article : Google Scholar
|
11
|
Fan Q-W and Weiss WA: Targeting the
RTK-PI3K-mTOR axis in malignant glioma: Overcoming resistance. Curr
Top Microbiol Immunol. 347:279–296. 2010.PubMed/NCBI
|
12
|
Huang H, Lin H, Zhang X and Li J:
Resveratrol reverses temozolomide resistance by downregulation of
MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway.
Oncol Rep. 27:2050–2056. 2012.PubMed/NCBI
|
13
|
Lizardi PM, Forloni M and Wajapeyee N:
Genome-wide approaches for cancer gene discovery. Trends
Biotechnol. 29:558–568. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rudalska R, Dauch D, Longerich T, McJunkin
K, Wuestefeld T, Kang TW, Hohmeyer A, Pesic M, Leibold J, von Thun
A, et al: In vivo RNAi screening identifies a mechanism of
sorafenib resistance in liver cancer. Nat Med. 20:1138–1146. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Xu H, Sun H, Zhang H, Liu J, Fan F, Li Y,
Ning X, Sun Y, Dai S, Liu B, et al: An shRNA based genetic screen
identified Sesn2 as a potential tumor suppressor in lung cancer via
suppression of Akt-mTOR-p70S6K signaling. PLoS One.
10:e01240332015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sroczynska P, Cruickshank VA, Bukowski
J-P, Miyagi S, Bagger FO, Walfridsson J, Schuster MB, Porse B and
Helin K: shRNA screening identifies JMJD1C as being required for
leukemia maintenance. Blood. 123:1870–1882. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen Y, Boland A, Kuzuoğlu-Öztürk D,
Bawankar P, Loh B, Chang CT, Weichenrieder O and Izaurralde E: A
DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct
links between miRNA target recognition and silencing. Mol Cell.
54:737–750. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee J, Kotliarova S, Kotliarov Y, Li A, Su
Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al:
Tumor stem cells derived from glioblastomas cultured in bFGF and
EGF more closely mirror the phenotype and genotype of primary
tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403.
2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Joo KM, Kim J, Jin J, Kim M, Seol HJ,
Muradov J, Yang H, Choi YL, Park WY, Kong DS, et al:
Patient-specific orthotopic glioblastoma xenograft models
recapitulate the histopathology and biology of human glioblastomas
in situ. Cell Rep. 3:260–273. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rota LM, Lazzarino DA, Ziegler AN, LeRoith
D and Wood TL: Determining mammosphere-forming potential:
Application of the limiting dilution analysis. J Mammary Gland Biol
Neoplasia. 17:119–123. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wei QCSL, Shen L, Zheng S and Zhu YL:
Isolation and characterization of radiation-resistant lung cancer
D6-R cell line. Biomed Environ Sci. 21:339–344. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gomez-Casal R, Bhattacharya C, Ganesh N,
Bailey L, Basse P, Gibson M, Epperly M and Levina V: Non-small cell
lung cancer cells survived ionizing radiation treatment display
cancer stem cell and epithelial-mesenchymal transition phenotypes.
Mol Cancer. 12:942013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Mullenders J and Bernards R:
Loss-of-function genetic screens as a tool to improve the diagnosis
and treatment of cancer. Oncogene. 28:4409–4420. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou P, Shaffer DR, Alvarez Arias DA,
Nakazaki Y, Pos W, Torres AJ, Cremasco V, Dougan SK, Cowley GS,
Elpek K, et al: In vivo discovery of immunotherapy targets in the
tumour microenvironment. Nature. 506:52–57. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hitomi J, Christofferson DE, Ng A, Yao J,
Degterev A, Xavier RJ and Yuan J: Identification of a molecular
signaling network that regulates a cellular necrotic cell death
pathway. Cell. 135:1311–1323. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wajapeyee N, Serra RW, Zhu X, Mahalingam M
and Green MR: Oncogenic BRAF induces senescence and apoptosis
through pathways mediated by the secreted protein IGFBP7. Cell.
132:363–374. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen S, Blank JL, Peters T, Liu XJ,
Rappoli DM, Pickard MD, Menon S, Yu J, Driscoll DL, Lingaraj T, et
al: Genome-wide siRNA screen for modulators of cell death induced
by proteasome inhibitor bortezomib. Cancer Res. 70:4318–4326. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mendes-Pereira AM, Sims D, Dexter T,
Fenwick K, Assiotis I, Kozarewa I, Mitsopoulos C, Hakas J, Zvelebil
M, Lord CJ, et al: Genome-wide functional screen identifies a
compendium of genes affecting sensitivity to tamoxifen. Proc Natl
Acad Sci USA. 109:2730–2735. 2012. View Article : Google Scholar :
|
29
|
Cho YB, Hong HK, Choi Y-L, Oh E, Joo KM,
Jin J, Nam DH, Ko YH and Lee WY: Colorectal cancer patient-derived
xenografted tumors maintain characteristic features of the original
tumors. J Surg Res. 187:502–509. 2014. View Article : Google Scholar
|
30
|
Lee HW, Lee JI, Lee SJ, Cho HJ, Song HJ,
Jeong E, Seo YJ, Shin S, Joung JG, Kwon YJ, et al: Patient-derived
xenografts from non-small cell lung cancer brain metastases are
valuable translational platforms for the development of
personalized targeted therapy. Clin Cancer Res. 21:1172–1182. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Amin S, Kumar A, Nilchi L, Wright K and
Kozlowski M: Breast cancer cells proliferation is regulated by
tyrosine phosphatase SHP1 through c-jun N-terminal kinase and
cooperative induction of RFX-1 and AP-4 transcription factors. Mol
Cancer Res. 9:1112–1125. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Severson PL, Tokar EJ, Vrba L, Waalkes MP
and Futscher BW: Coordinate H3K9 and DNA methylation silencing of
ZNFs in toxicant-induced malignant transformation. Epigenetics.
8:1080–1088. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wong Y-H, Lu A-C, Wang Y-C, Cheng HC,
Chang C, Chen PH, Yu JY and Fann MJ: Protogenin defines a
transition stage during embryonic neurogenesis and prevents
precocious neuronal differentiation. J Neurosci. 30:4428–4439.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang YC, Juan HC, Wong YH, Kuo WC, Lu YL,
Lin SF, Lu CJ and Fann MJ: Protogenin prevents premature apoptosis
of rostral cephalic neural crest cells by activating the
α5β1-integrin. Cell Death Dis. 4:e6512013. View Article : Google Scholar
|
35
|
Ou Y-H, Chung P-H, Hsu F-F, Sun T-P, Chang
W-Y and Shieh S-Y: The candidate tumor suppressor BTG3 is a
transcriptional target of p53 that inhibits E2F1. EMBO J.
26:3968–3980. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kfoury A, Le Corf K, El Sabeh R, Journeaux
A, Badran B, Hussein N, Lebecque S, Manié S, Renno T and Coste I:
MyD88 in DNA repair and cancer cell resistance to genotoxic drugs.
J Natl Cancer Inst. 105:937–946. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Weston A and Sommerville J: Xp54 and
related (DDX6-like) RNA helicases: Roles in messenger RNP assembly,
translation regulation and RNA degradation. Nucleic Acids Res.
34:3082–3094. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang Y-P, Chien Y, Chiou G-Y, Cherng JY,
Wang ML, Lo WL, Chang YL, Huang PI, Chen YW, Shih YH, et al:
Inhibition of cancer stem cell-like properties and reduced
chemoradio-resistance of glioblastoma using microRNA145 with
cationic polyurethane-short branch PEI. Biomaterials. 33:1462–1476.
2012. View Article : Google Scholar
|
39
|
Iio A, Takagi T, Miki K, Naoe T, Nakayama
A and Akao Y: DDX6 post-transcriptionally down-regulates
miR-143/145 expression through host gene NCR143/145 in cancer
cells. Biochim Biophys Acta. 1829:1102–1110. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dean M, Fojo T and Bates S: Tumour stem
cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Baumann M, Krause M and Hill R: Exploring
the role of cancer stem cells in radioresistance. Nat Rev Cancer.
8:545–554. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rycaj K and Tang DG: Cancer stem cells and
radioresistance. Int J Radiat Biol. 90:615–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sotiropoulou PA, Christodoulou MS, Silvani
A, Herold-Mende C and Passarella D: Chemical approaches to
targeting drug resistance in cancer stem cells. Drug Discov Today.
19:1547–1562. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra
E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA,
et al: MicroRNA expression profiles classify human cancers. Nature.
435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lin S and Gregory RI: MicroRNA biogenesis
pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Miller TE, Ghoshal K, Ramaswamy B, Roy S,
Datta J, Shapiro CL, Jacob S and Majumder S: MicroRNA-221/222
confers tamoxifen resistance in breast cancer by targeting p27Kip1.
J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P
and Hu W: MicroRNA-181a sensitizes human malignant glioma U87MG
cells to radiation by targeting Bcl-2. Oncol Rep. 23:997–1003.
2010.PubMed/NCBI
|
49
|
Wong ST, Zhang XQ, Zhuang JT, Chan HL, Li
CH and Leung GK: MicroRNA-21 inhibition enhances in vitro
chemosensitivity of temozolomide-resistant glioblastoma cells.
Anticancer Res. 32:2835–2841. 2012.PubMed/NCBI
|
50
|
Ujifuku K, Mitsutake N, Takakura S,
Matsuse M, Saenko V, Suzuki K, Hayashi K, Matsuo T, Kamada K,
Nagata I, et al: miR-195, miR-455-3p and miR-10a(*) are implicated
in acquired temozolomide resistance in glioblastoma multiforme
cells. Cancer Lett. 296:241–248. 2010. View Article : Google Scholar : PubMed/NCBI
|