1
|
Brady CA and Attardi LD: p53 at a glance.
J Cell Sci. 123:2527–2532. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Levine AJ and Oren M: The first 30 years
of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hirao A, Kong YY, Matsuoka S, Wakeham A,
Ruland J, Yoshida H, Liu D, Elledge SJ and Mak TW: DNA
damage-induced activation of p53 by the checkpoint kinase Chk2.
Science. 287:1824–1827. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bensaad K, Tsuruta A, Selak MA, Vidal MN,
Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a
p53-inducible regulator of glycolysis and apoptosis. Cell.
126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hu W, Zhang C, Wu R, Sun Y, Levine A and
Feng Z: Glutaminase 2, a novel p53 target gene regulating energy
metabolism and antioxidant function. Proc Natl Acad Sci USA.
107:7455–7460. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kenzelmann Broz D, Spano Mello S, Bieging
KT, Jiang D, Dusek RL, Brady CA, Sidow A and Attardi LD: Global
genomic profiling reveals an extensive p53-regulated autophagy
program contributing to key p53 responses. Genes Dev. 27:1016–1031.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ju S, Shaltiel G, Shamir A, Agam G and
Greenberg ML: Human 1-D-myo-inositol-3-phosphate synthase is
functional in yeast. J Biol Chem. 279:21759–21765. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Croze ML and Soulage CO: Potential role
and therapeutic interests of myo-inositol in metabolic diseases.
Biochimie. 95:1811–1827. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Maeba R, Hara H, Ishikawa H, Hayashi S,
Yoshimura N, Kusano J, Takeoka Y, Yasuda D, Okazaki T, Kinoshita M,
et al: Myo-inositol treatment increases serum plasmalogens and
decreases small dense LDL, particularly in hyperlipidemic subjects
with metabolic syndrome. J Nutr Sci Vitaminol (Tokyo). 54:196–202.
2008. View Article : Google Scholar
|
10
|
Mukai T, Kishi T, Matsuda Y and Iwata N: A
meta-analysis of inositol for depression and anxiety disorders. Hum
Psychopharmacol. 29:55–63. 2014. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Lam S, McWilliams A, LeRiche J, MacAulay
C, Wattenberg L and Szabo E: A phase I study of myo-inositol for
lung cancer chemoprevention. Cancer Epidemiol Biomarkers Prev.
15:1526–1531. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Han W, Gills JJ, Memmott RM, Lam S and
Dennis PA: The chemopreventive agent myoinositol inhibits Akt and
extracellular signal-regulated kinase in bronchial lesions from
heavy smokers. Cancer Prev Res (Phila). 2:370–376. 2009. View Article : Google Scholar
|
13
|
Gustafson AM, Soldi R, Anderlind C,
Scholand MB, Qian J, Zhang X, Cooper K, Walker D, McWilliams A, Liu
G, et al: Airway PI3K pathway activation is an early and reversible
event in lung cancer development. Sci Transl Med.
2:26ra252010.PubMed/NCBI
|
14
|
Oda K, Arakawa H, Tanaka T, Matsuda K,
Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, et
al: p53AIP1, a potential mediator of p53-dependent apoptosis, and
its regulation by Ser-46-phosphorylated p53. Cell. 102:849–862.
2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tanikawa C, Matsuda K, Fukuda S, Nakamura
Y and Arakawa H: p53RDL1 regulates p53-dependent apoptosis. Nat
Cell Biol. 5:216–223. 2003. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Tsukada T, Tomooka Y, Takai S, Ueda Y,
Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S, et al:
Enhanced proliferative potential in culture of cells from
p53-deficient mice. Oncogene. 8:3313–3322. 1993.PubMed/NCBI
|
17
|
Taura M, Eguma A, Suico MA, Shuto T, Koga
T, Komatsu K, Komune T, Sato T, Saya H, Li JD, et al: p53 regulates
Toll-like receptor 3 expression and function in human epithelial
cell lines. Mol Cell Biol. 28:6557–6567. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
el-Deiry WS, Kern SE, Pietenpol JA,
Kinzler KW and Vogelstein B: Definition of a consensus binding site
for p53. Nat Genet. 1:45–49. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Michell RH: Inositol derivatives:
Evolution and functions. Nat Rev Mol Cell Biol. 9:151–161. 2008.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Seelan RS, Lakshmanan J, Casanova MF and
Parthasarathy RN: Identification of myo-inositol-3-phosphate
synthase isoforms: Characterization, expression, and putative role
of a 16-kDa gamma(c) isoform. J Biol Chem. 284:9443–9457. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Konarzewska P, Esposito M and Shen CH:
INO1 induction requires chromatin remodelers Ino80p and Snf2p but
not the histone acetylases. Biochem Biophys Res Commun.
418:483–488. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Valluru R and Van den Ende W: Myo-inositol
and beyond - emerging networks under stress. Plant Sci.
181:387–400. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Deranieh RM, He Q, Caruso JA and Greenberg
ML: Phosphorylation regulates myo-inositol-3-phosphate synthase: A
novel regulatory mechanism of inositol biosynthesis. J Biol Chem.
288:26822–26833. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Parthasarathy RN, Lakshmanan J, Thangavel
M, Seelan RS, Stagner JI, Janckila AJ, Vadnal RE, Casanova MF and
Parthasarathy LK: Rat brain myo-inositol 3-phosphate synthase is a
phosphoprotein. Mol Cell Biochem. 378:83–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Henry SA, Gaspar ML and Jesch SA: The
response to inositol: Regulation of glycerolipid metabolism and
stress response signaling in yeast. Chem Phys Lipids. 180:23–43.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guan G, Dai P and Shechter I: cDNA cloning
and gene expression analysis of human myo-inositol 1-phosphate
synthase. Arch Biochem Biophys. 417:251–259. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chauvin TR and Griswold MD:
Characterization of the expression and regulation of genes
necessary for myo-inositol biosynthesis and transport in the
seminiferous epithelium. Biol Reprod. 70:744–751. 2004. View Article : Google Scholar
|
28
|
Ye Y, Jin L, Wilmott JS, Hu WL, Yosufi B,
Thorne RF, Liu T, Rizos H, Yan XG, Dong L, et al: PI(4,5)P2
5-phosphatase A regulates PI3K/Akt signalling and has a tumour
suppressive role in human melanoma. Nat Commun. 4:15082013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ohnishi T, Murata T, Watanabe A, Hida A,
Ohba H, Iwayama Y, Mishima K, Gondo Y and Yoshikawa T: Defective
craniofacial development and brain function in a mouse model for
depletion of intracellular inositol synthesis. J Biol Chem.
289:10785–10796. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Eagle H, Oyama VI, Levy M and Freeman AE:
Myo-inositol as an essential growth factor for normal and malignant
human cells in tissue culture. J Biol Chem. 226:191–205.
1957.PubMed/NCBI
|
31
|
Hecht SS, Upadhyaya P, Wang M, Bliss RL,
McIntee EJ and Kenney PM: Inhibition of lung tumorigenesis in A/J
mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L-cysteine and
myo-inositol, individually and in combination. Carcinogenesis.
23:1455–1461. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee HJ, Lee SA and Choi H: Dietary
administration of inositol and/or inositol-6-phosphate prevents
chemically-induced rat hepatocarcinogenesis. Asian Pac J Cancer
Prev. 6:41–47. 2005.PubMed/NCBI
|
33
|
Nishino H: Phytochemicals in
hepatocellular cancer prevention. Nutr Cancer. 61:789–791. 2009.
View Article : Google Scholar
|
34
|
Vucenik I and Shamsuddin AM: Protection
against cancer by dietary IP6 and inositol. Nutr Cancer.
55:109–125. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wattenberg LW and Estensen RD:
Chemopreventive effects of myo-inositol and dexamethasone on
benzo[a]pyrene and
4-(methyl-nitrosoamino)-1-(3-pyridyl)-1-butanone-induced pulmonary
carcinogenesis in female A/J mice. Cancer Res. 56:5132–5135.
1996.PubMed/NCBI
|
36
|
Witschi H, Espiritu I and Uyeminami D:
Chemoprevention of tobacco smoke-induced lung tumors in A/J strain
mice with dietary myo-inositol and dexamethasone. Carcinogenesis.
20:1375–1378. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kassie F, Kalscheuer S, Matise I, Ma L,
Melkamu T, Upadhyaya P and Hecht SS: Inhibition of vinyl
carbamate-induced pulmonary adenocarcinoma by indole-3-carbinol and
myo-inositol in A/J mice. Carcinogenesis. 31:239–245. 2010.
View Article : Google Scholar :
|
38
|
Kassie F, Matise I, Negia M, Lahti D, Pan
Y, Scherber R, Upadhyaya P and Hecht SS: Combinations of
N-Acetyl-S-(N-2-Phenethylthiocarbamoyl)-L-Cysteine and myo-inositol
inhibit tobacco carcinogen-induced lung adenocarcinoma in mice.
Cancer Prev Res (Phila). 1:285–297. 2008. View Article : Google Scholar
|
39
|
Memmott RM and Dennis PA: The role of the
Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis.
Clin Cancer Res. 16:4–10. 2010. View Article : Google Scholar :
|
40
|
Kawase T, Ohki R, Shibata T, Tsutsumi S,
Kamimura N, Inazawa J, Ohta T, Ichikawa H, Aburatani H, Tashiro F,
et al: PH domain-only protein PHLDA3 is a p53-regulated repressor
of Akt. Cell. 136:535–550. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jacks T, Remington L, Williams BO, Schmitt
EM, Halachmi S, Bronson RT and Weinberg RA: Tumor spectrum analysis
in p53-mutant mice. Curr Biol. 4:1–7. 1994. View Article : Google Scholar : PubMed/NCBI
|