1
|
Silvertown JD, Summerlee AJ and Klonisch
T: Relaxin-like peptides in cancer. Int J Cancer. 107:513–519.
2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Domińska K and Lachowicz-Ochedalska A: The
involvement of the renin-angiotensin system (RAS) in
cancerogenesis. Postepy Biochem. 54:294–300. 2008.(In Polish).
|
3
|
Domińska K: Relaxin 2 - a pregnancy
hormone involved in the process of carcinogenesis. Ginekol Pol.
84:126–130. 2013.(In Polish). View
Article : Google Scholar
|
4
|
Dinh DT, Frauman AG, Somers GR, Ohishi M,
Zhou J, Casley DJ, Johnston CI and Fabiani ME: Evidence for
activation of the renin-angiotensin system in the human prostate:
Increased angiotensin II and reduced AT(1) receptor expression in
benign prostatic hyperplasia. J Pathol. 196:213–219. 2002.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Louis SN, Wang L, Chow L, Rezmann LA,
Imamura K, MacGregor DP, Casely D, Catt KJ, Frauman AG and Louis
WJ: Appearance of angiotensin II expression in non-basal epithelial
cells is an early feature of malignant change in human prostate.
Cancer Detect Prev. 31:391–395. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Feng S, Agoulnik IU, Bogatcheva NV, Kamat
AA, Kwabi-Addo B, Li R, Ayala G, Ittmann MM and Agoulnik AI:
Relaxin promotes prostate cancer progression. Clin Cancer Res.
13:1695–1702. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Feng S, Agoulnik IU, Li Z, Han HD,
Lopez-Berestein G, Sood A, Ittmann MM and Agoulnik AI:
Relaxin/RXFP1 signaling in prostate cancer progression. Ann NY Acad
Sci. 1160:379–380. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lamp O, Honscha KU, Schweizer S, Heckmann
A, Blaschzik S and Einspanier A: The metastatic potential of canine
mammary tumours can be assessed by mRNA expression analysis of
connective tissue modulators. Vet Comp Oncol. 11:70–85. 2013.
View Article : Google Scholar
|
9
|
Chow BS, Kocan M, Bosnyak S, Sarwar M,
Wigg B, Jones ES, Widdop RE, Summers RJ, Bathgate RA, Hewitson TD,
et al: Relaxin requires the angiotensin II type 2 receptor to
abrogate renal interstitial fibrosis. Kidney Int. 86:75–85. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sasser JM, Molnar M and Baylis C: Relaxin
ameliorates hypertension and increases nitric oxide metabolite
excretion in angiotensin II but not N(ω)-nitro-L-arginine methyl
ester hypertensive rats. Hypertension. 58:197–204. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ferreira VM, Gomes TS, Reis LA, Ferreira
AT, Razvickas CV, Schor N and Boim MA: Receptor-induced dilatation
in the systemic and intrarenal adaptation to pregnancy in rats.
PLoS One. 4:e48452009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Geddes BJ, Parry LJ and Summerlee AJ:
Brain angiotensin-II partially mediates the effects of relaxin on
vasopressin and oxytocin release in anesthetized rats.
Endocrinology. 134:1188–1192. 1994.PubMed/NCBI
|
13
|
Amamoo A and Wilson BC: Relaxin inhibits
central angiotensin II expression in killifish: A central
osmoregulatory role for relaxin and angiotensin II in the killifish
Fundulus heteroclitus. Ann NY Acad Sci. 1041:229–232. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Friedl P and Wolf K: Tumour-cell invasion
and migration: Diversity and escape mechanisms. Nat Rev Cancer.
3:362–374. 2003. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang M, Latham DE, Delaney MA and
Chakravarti A: Survivin mediates resistance to antiandrogen therapy
in prostate cancer. Oncogene. 24:2474–2482. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Duffy MJ, O'Donovan N, Brennan DJ,
Gallagher WM and Ryan BM: Survivin: A promising tumor biomarker.
Cancer Lett. 249:49–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin Y, Fukuchi J, Hiipakka RA, Kokontis JM
and Xiang J: Up-regulation of Bcl-2 is required for the progression
of prostate cancer cells from an androgen-dependent to an
androgen-independent growth stage. Cell Res. 17:531–536. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hadler-Olsen E, Winberg JO and
Uhlin-Hansen L: Matrix metal-loproteinases in cancer: Their value
as diagnostic and prognostic markers and therapeutic targets.
Tumour Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alimirah F, Chen J, Basrawala Z, Xin H and
Choubey D: DU-145 and PC-3 human prostate cancer cell lines express
androgen receptor: Implications for the androgen receptor functions
and regulation. FEBS Lett. 580:2294–2300. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Piastowska-Ciesielska AW, Gajewska M,
Wagner W, Dominska K and Ochedalski T: Modulatory effect of
selenium on cell-cycle regulatory genes in the prostate
adenocarcinoma cell line. J Appl Biomed. 12:87–95. 2014. View Article : Google Scholar
|
21
|
Piastowska-Ciesielska AW, Kozłowski M,
Wagner W, Domińska K and Ochędalski T: Effect of an angiotensin II
type 1 receptor blocker on caveolin-1 expression in prostate cancer
cells. Arch Med Sci. 9:739–744. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pluciennik E, Krol M, Nowakowska M,
Kusinska R, Potemski P, Kordek R and Bednarek AK: Breast cancer
relapse prediction based on multi-gene RT-PCR algorithm. Med Sci
Monit. 16:CR132–CR136. 2010.PubMed/NCBI
|
23
|
Liu S, Vinall RL, Tepper C, Shi XB, Xue
LR, Ma AH, Wang LY, Fitzgerald LD, Wu Z, Gandour-Edwards R, et al:
Inappropriate activation of androgen receptor by relaxin via
beta-catenin pathway. Oncogene. 27:499–505. 2008. View Article : Google Scholar
|
24
|
Vinall RL, Mahaffey CM, Davis RR, Luo Z,
Gandour-Edwards R, Ghosh PM, Tepper CG and de Vere White RW: Dual
blockade of PKA and NF-κB inhibits H2 relaxin-mediated
castrate-resistant growth of prostate cancer sublines and induces
apoptosis. Horm Cancer. 2:224–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke
WA, Messing EM, Yao J, Yeh S and Chang C: Androgen receptor is a
tumor suppressor and proliferator in prostate cancer. Proc Natl
Acad Sci USA. 105:12182–12187. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin B, Wang J, Hong X, Yan X, Hwang D, Cho
JH, Yi D, Utleg AG, Fang X, Schones DE, et al: Integrated
expression profiling and ChIP-seq analyses of the growth inhibition
response program of the androgen receptor. PLoS One. 4:e65892009.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Thompson VC, Morris TG, Cochrane DR,
Cavanagh J, Wafa LA, Hamilton T, Wang S, Fazli L, Gleave ME and
Nelson CC: Relaxin becomes upregulated during prostate cancer
progression to androgen independence and is negatively regulated by
androgens. Prostate. 66:1698–1709. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Domińska K, Piastowska-Ciesielska AW,
Lachowicz-Ochędalska A and Ochędalski T: Similarities and
differences between effects of angiotensin III and angiotensin II
on human prostate cancer cell migration and proliferation.
Peptides. 37:200–206. 2012. View Article : Google Scholar
|
29
|
Uemura H, Ishiguro H, Nakaigawa N,
Nagashima Y, Miyoshi Y, Fujinami K, Sakaguchi A and Kubota Y:
Angiotensin II receptor blocker shows antiproliferative activity in
prostate cancer cells: A possibility of tyrosine kinase inhibitor
of growth factor. Mol Cancer Ther. 2:1139–1147. 2003.PubMed/NCBI
|
30
|
Pawlikowski M, Minias R, Sosnowski M and
Zielinski KW: Immunohistochemical detection of angiotensin AT1 and
AT2 receptors in prosate cancer, Central Eur. J Urol. 64:252–255.
2011.
|
31
|
Chow L, Rezmann L, Imamura K, Wang L, Catt
K, Tikellis C, Louis WJ, Frauman AG and Louis SNS: Functional
angiotensin II type 2 receptors inhibit growth factor signaling in
LNCaP and PC3 prostate cancer cell lines. Prostate. 68:651–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rampersad SN: Multiple applications of
Alamar Blue as an indicator of metabolic function and cellular
health in cell viability bioassays. Sensors (Basel).
12:12347–12360. 2012. View Article : Google Scholar
|
33
|
Niles AL, Moravec RA and Riss TL: Update
on in vitro cytotoxicity assays for drug development. Expert Opin
Drug Discov. 3:655–669. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hamid R, Rotshteyn Y, Rabadi L, Parikh R
and Bullock P: Comparison of alamar blue and MTT assays for high
through-put screening. Toxicol In Vitro. 18:703–710. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Khan S, Jutzy JM, Valenzuela MM, Turay D,
Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB and Wall NR:
Plasma-derived exosomal survivin, a plausible biomarker for early
detection of prostate cancer. PLoS One. 7:e467372012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Arbab IA, Looi CY, Abdul AB, Cheah FK,
Wong WF, Sukari MA, Abdullah R, Mohan S, Syam S, Arya A, et al:
Dentatin Induces apoptosis in prostate cancer cells via Bcl-2,
Bcl-xL, survivin downregulation, caspase-9, −3/7 activation, and
NF-κB inhibition. Evid Based Complement Alternat Med.
2012:8560292012. View Article : Google Scholar
|
37
|
Shariat SF, Lotan Y, Saboorian H, Khoddami
SM, Roehrborn CG, Slawin KM and Ashfaq R: Survivin expression is
associated with features of biologically aggressive prostate
carcinoma. Cancer. 100:751–757. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Arya M, Bott SR, Shergill IS, Ahmed HU,
Williamson M and Patel HR: The metastatic cascade in prostate
cancer. Surg Oncol. 15:117–128. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Moro L, Arbini AA, Marra E and Greco M:
Up-regulation of Skp2 after prostate cancer cell adhesion to
basement membranes results in BRCA2 degradation and cell
proliferation. J Biol Chem. 281:22100–22107. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rodrigues-Ferreira S, Abdelkarim M,
Dillenburg-Pilla P, Luissint AC, di-Tommaso A, Deshayes F, Pontes
CL, Molina A, Cagnard N, Letourneur F, et al: Angiotensin II
facilitates breast cancer cell migration and metastasis. PLoS One.
7:e356672012. View Article : Google Scholar : PubMed/NCBI
|