1
|
Gaffan J, Dacre J and Jones A: Educating
undergraduate medical students about oncology: A literature review.
J Clin Oncol. 24:1932–1939. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Lagasse E: Cancer stem cells with genetic
instability: The best vehicle with the best engine for cancer. Gene
Ther. 15:136–142. 2008. View Article : Google Scholar
|
4
|
Vlashi E, Kim K, Lagadec C, Donna LD,
McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W and Pajonk
F: In vivo imaging, tracking, and targeting of cancer stem cells. J
Natl Cancer Inst. 101:350–359. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ouhtit A, Abd Elmageed ZY, Abdraboh ME,
Lioe TF and Raj MHG: In vivo evidence for the role of CD44s in
promoting breast cancer metastasis to the liver. Am J Pathol.
171:2033–2039. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Naor D, Sionov RV and Ish-Shalom D: CD44:
Structure, function, and association with the malignant process.
Adv Cancer Res. 71:241–319. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yin H and Glass J: The phenotypic
radiation resistance of CD44+/CD24(-or low) breast
cancer cells is mediated through the enhanced activation of ATM
signaling. PLoS One. 6:e240802011. View Article : Google Scholar
|
8
|
Phillips TM, McBride WH and Pajonk F: The
response of CD24(-/low)/CD44+ breast cancer-initiating
cells to radiation. J Natl Cancer Inst. 98:1777–1785. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lagadec C, Vlashi E, Della Donna L, Meng
Y, Dekmezian C, Kim K and Pajonk F: Survival and self-renewing
capacity of breast cancer initiating cells during fractionated
radiation treatment. Breast Cancer Res. 12:R132010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Woodward WA, Chen MS, Behbod F, Alfaro MP,
Buchholz TA and Rosen JM: WNT/beta-catenin mediates radiation
resistance of mouse mammary progenitor cells. Proc Natl Acad Sci
USA. 104:618–623. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kruger JA, Kaplan CD, Luo Y, Zhou H,
Markowitz D, Xiang R and Reisfeld RA: Characterization of stem
cell-like cancer cells in immune-competent mice. Blood.
108:3906–3912. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Khan SA, Cook AC, Kappil M, Günthert U,
Chambers AF, Tuck AB and Denhardt DT: Enhanced cell surface CD44
variant (v6, v9) expression by osteopontin in breast cancer
epithelial cells facilitates tumor cell migration: Novel
post-transcriptional, post-translational regulation. Clin Exp
Metastasis. 22:663–673. 2005. View Article : Google Scholar
|
13
|
Naor D, Nedvetzki S, Golan I, Melnik L and
Faitelson Y: CD44 in cancer. Crit Rev Clin Lab Sci. 39:527–579.
2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sheridan C, Kishimoto H, Fuchs RK,
Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S and
Nakshatri H: CD44+/CD24− breast cancer cells
exhibit enhanced invasive properties: An early step necessary for
metastasis. Breast Cancer Res. 8:R592006. View Article : Google Scholar
|
15
|
Bànkfalvi A, Terpe HJ, Breukelmann D, Bier
B, Rempe D, Pschadka G, Krech R and Böcker W: Gains and losses of
CD44 expression during breast carcinogenesis and tumour
progression. Histopathology. 33:107–116. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hill A, McFarlane S, Mulligan K, Gillespie
H, Draffin JE, Trimble A, Ouhtit A, Johnston PG, Harkin DP,
McCormick D, et al: Cortactin underpins CD44-promoted invasion and
adhesion of breast cancer cells to bone marrow endothelial cells.
Oncogene. 25:6079–6091. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Herring PJ: Species abundance, sexual
encounter and bioluminescent signalling in the deep sea. Philos
Trans R Soc Lond B Biol Sci. 355:1273–1276. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wilson T and Hastings JW: Bioluminescence.
Annu Rev Cell Dev Biol. 14:197–230. 1998. View Article : Google Scholar
|
19
|
Contag CH and Ross BD: It's not just about
anatomy: In vivo bioluminescence imaging as an eyepiece into
biology. J Magn Reson Imaging. 16:378–387. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu H, Patel MR, Prescher JA, Patsialou A,
Qian D, Lin J, Wen S, Chang YF, Bachmann MH, Shimono Y, et al:
Cancer stem cells from human breast tumors are involved in
spontaneous metastases in orthotopic mouse models. Proc Natl Acad
Sci USA. 107:18115–18120. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Godar S, Ince TA, Bell GW, Feldser D,
Donaher JL, Bergh J, Liu A, Miu K, Watnick RS, Reinhardt F, et al:
Growth-inhibitory and tumor-suppressive functions of p53 depend on
its repression of CD44 expression. Cell. 134:62–73. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Pongcharoen P, Jinawath A and Tohtong R:
Silencing of CD44 by siRNA suppressed invasion, migration and
adhesion to matrix, but not secretion of MMPs, of
cholangiocarcinoma cells. Clin Exp Metastasis. 28:827–839. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Franken NAP, Rodermond HM, Stap J, Haveman
J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc.
1:2315–2319. 2006. View Article : Google Scholar
|
24
|
de Jong MC, Pramana J, van der Wal JE,
Lacko M, Peutz-Kootstra CJ, de Jong JM, Takes RP, Kaanders JH, van
der Laan BF, Wachters J, et al: CD44 expression predicts local
recurrence after radiotherapy in larynx cancer. Clin Cancer Res.
16:5329–5338. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gomez-Casal R, Bhattacharya C, Ganesh N,
Bailey L, Basse P, Gibson M, Epperly M and Levina V: Non-small cell
lung cancer cells survived ionizing radiation treatment display
cancer stem cell and epithelial-mesenchymal transition phenotypes.
Mol Cancer. 12:942013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Krause M, Yaromina A, Eicheler W, Koch U
and Baumann M: Cancer stem cells: Targets and potential biomarkers
for radiotherapy. Clin Cancer Res. 17:7224–7229. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lagadec C, Vlashi E, Della Donna L,
Dekmezian C and Pajonk F: Radiation-induced reprogramming of breast
cancer cells. Stem Cells. 30:833–844. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Contag CH and Bachmann MH: Advances in in
vivo bioluminescence imaging of gene expression. Annu Rev Biomed
Eng. 4:235–260. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Luker GD, Pica CM, Song J, Luker KE and
Piwnica-Worms D: Imaging 26S proteasome activity and inhibition in
living mice. Nat Med. 9:969–973. 2003. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Li C, Heidt DG, Dalerba P, Burant CF,
Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification
of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Li X, Lewis MT, Huang J, Gutierrez C,
Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC,
et al: Intrinsic resistance of tumorigenic breast cancer cells to
chemotherapy. J Natl Cancer Inst. 100:672–679. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dontu G, Abdallah WM, Foley JM, Jackson
KW, Clarke MF, Kawamura MJ and Wicha MS: In vitro propagation and
transcriptional profiling of human mammary stem/progenitor cells.
Genes Dev. 17:1253–1270. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gupta PB, Chaffer CL and Weinberg RA:
Cancer stem cells: Mirage or reality? Nat Med. 15:1010–1012. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Fábián Á, Vereb G and Szöllősi J: The
hitchhikers guide to cancer stem cell theory: Markers, pathways and
therapy. Cytometry A. 83:62–71. 2013. View Article : Google Scholar
|