1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Center MM, DeSantis C and Ward
EM: Global patterns of cancer incidence and mortality rates and
trends. Cancer Epidemiol Biomarkers Prev. 19:1893–1907. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Althuis MD, Dozier JM, Anderson WF, Devesa
SS and Brinton LA: Global trends in breast cancer incidence and
mortality 1973–1997. Int J Epidemiol. 34:405–412. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Canfell K, Banks E, Moa AM and Beral V:
Decrease in breast cancer incidence following a rapid fall in use
of hormone replacement therapy in Australia. Med J Aust.
188:641–644. 2008.PubMed/NCBI
|
5
|
Parkin DM: Is the recent fall in incidence
of post-menopausal breast cancer in UK related to changes in use of
hormone replacement therapy? Eur J Cancer. 45:1649–1653. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Séradour B, Allemand H, Weill A and
Ricordeau P: Changes by age in breast cancer incidence, mammography
screening and hormone therapy use in France from 2000 to 2006. Bull
Cancer. 96:E1–E6. 2009.PubMed/NCBI
|
7
|
Schlotter CM, Vogt U, Allgayer H and
Brandt B: Molecular targeted therapies for breast cancer treatment.
Breast Cancer Res. 10:2112008. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Gasparini G, Longo R, Torino F and
Morabito A: Therapy of breast cancer with molecular targeting
agents. Ann Oncol. 16(Suppl 4): iv28–iv36. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Foulkes WD, Smith IE and Reis-Filho JS:
Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Farmer H, McCabe N, Lord CJ, Tutt AN,
Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I,
Knights C, et al: Targeting the DNA repair defect in BRCA mutant
cells as a therapeutic strategy. Nature. 434:917–921. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Fong PC, Boss DS, Yap TA, Tutt A, Wu P,
Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, et
al: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA
mutation carriers. N Engl J Med. 361:123–134. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ashida H, Hong Y, Murakami Y, Shishioh N,
Sugimoto N, Kim YU, Maeda Y and Kinoshita T: Mammalian PIG-X and
yeast Pbn1p are the essential components of
glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell.
16:1439–1448. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nishidate T, Katagiri T, Lin ML, Mano Y,
Miki Y, Kasumi F, Yoshimoto M, Tsunoda T, Hirata K and Nakamura Y:
Genome-wide gene-expression profiles of breast-cancer cells
purified with laser microbeam microdissection: Identification of
genes associated with progression and metastasis. Int J Oncol.
25:797–819. 2004.PubMed/NCBI
|
14
|
Tamura K, Furihata M, Tsunoda T, Ashida S,
Takata R, Obara W, Yoshioka H, Daigo Y, Nasu Y, Kumon H, et al:
Molecular features of hormone-refractory prostate cancer cells by
genome-wide gene expression profiles. Cancer Res. 67:5117–5125.
2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rhodes DR, Yu J, Shanker K, Deshpande N,
Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM:
ONCOMINE: A cancer microarray database and integrated data-mining
platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gao J, Aksoy BA, Dogrusoz U, Dresdner G,
Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al:
Integrative analysis of complex cancer genomics and clinical
profiles using the cBio-Portal. Sci Signal. 6:pl12013. View Article : Google Scholar
|
18
|
Györffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar
|
19
|
Győrffy B, Surowiak P, Budczies J and
Lánczky A: Online survival analysis software to assess the
prognostic value of biomarkers using transcriptomic data in
non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar
|
20
|
Goujon M, McWilliam H, Li W, Valentin F,
Squizzato S, Paern J and Lopez R: A new bioinformatics analysis
tools framework at EMBL-EBI. Nucleic Acids Res. 38(Web Server):
W695–W699. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zdobnov EM and Apweiler R: InterProScan -
an integration platform for the signature-recognition methods in
InterPro. Bioinformatics. 17:847–848. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Giribaldi G, Barbero G, Mandili G, Daniele
L, Khadjavi A, Notarpietro A, Ulliers D, Prato M, Minero VG,
Battaglia A, et al: Proteomic identification of Reticulocalbin 1 as
potential tumor marker in renal cell carcinoma. J Proteomics.
91:385–392. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu Z, Brattain MG and Appert H:
Differential display of reticulocalbin in the highly invasive cell
line, MDA-MB-435, versus the poorly invasive cell line, MCF-7.
Biochem Biophys Res Commun. 231:283–289. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen JJ, Reid CE, Band V and Androphy EJ:
Interaction of papillomavirus E6 oncoproteins with a putative
calcium-binding protein. Science. 269:529–531. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shi Y, Liu X, Sun Y, Wu D, Qiu A, Cheng H,
Wu C and Wang X: Decreased expression and prognostic role of EHD2
in human breast carcinoma: Correlation with E-cadherin. J Mol
Histol. 46:221–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang X, Ren H, Yao L, Chen X and He A:
Role of EHD2 in migration and invasion of human breast cancer
cells. Tumour Biol. 36:3717–3726. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gan L, Chen S, Zhong J, Wang X, Lam EK,
Liu X, Zhang J, Zhou T, Yu J, Si J, et al: ZIC1 is downregulated
through promoter hypermethylation, and functions as a tumor
suppressor gene in colorectal cancer. PLoS One. 6:e169162011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhong J, Chen S, Xue M, Du Q, Cai J, Jin
H, Si J and Wang L: ZIC1 modulates cell-cycle distributions and
cell migration through regulation of sonic hedgehog, PI(3)K and
MAPK signaling pathways in gastric cancer. BMC Cancer. 12:2902012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Qiang W, Zhao Y, Yang Q, Liu W, Guan H, Lv
S, Ji M, Shi B and Hou P: ZIC1 is a putative tumor suppressor in
thyroid cancer by modulating major signaling pathways and
transcription factor FOXO3a. J Clin Endocrinol Metab.
99:E1163–E1172. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chakrabarti A, Oehme I, Witt O, Oliveira
G, Sippl W, Romier C, Pierce RJ and Jung M: HDAC8: A multifaceted
target for therapeutic interventions. Trends Pharmacol Sci.
36:481–492. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ferguson MAJ, Kinoshita T and Hart GW:
Glycosylphosphatidylinositol anchors. Essentials of Glycobiology.
Varki A, Cummings RD and Esko JD: Cold Spring Harbor, NY: 2009
|
32
|
Gamage DG and Hendrickson TL: GPI
transamidase and GPI anchored proteins: Oncogenes and biomarkers
for cancer. Crit Rev Biochem Mol Biol. 48:446–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao P, Nairn AV, Hester S, Moremen KW,
O’Regan RM, Oprea G, Wells L, Pierce M and Abbott KL: Proteomic
identification of glycosylphosphatidylinositol anchor-dependent
membrane proteins elevated in breast carcinoma. J Biol Chem.
287:25230–25240. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu G, Guo Z, Chatterjee A, Huang X, Rubin
E, Wu F, Mambo E, Chang X, Osada M, Sook Kim M, et al:
Overexpression of glycosylphosphatidylinositol (GPI) transamidase
subunits phosphatidylinositol glycan class T and/or GPI anchor
attachment 1 induces tumorigenesis and contributes to invasion in
human breast cancer. Cancer Res. 66:9829–9836. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ozawa M and Muramatsu T: Reticulocalbin, a
novel endoplasmic reticulum resident Ca(2+)-binding protein with
multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. J
Biol Chem. 268:699–705. 1993.PubMed/NCBI
|
36
|
Weis K, Griffiths G and Lamond AI: The
endoplasmic reticulum calcium-binding protein of 55 kDa is a novel
EF-hand protein retained in the endoplasmic reticulum by a
carboxyl-terminal His-Asp-Glu-Leu motif. J Biol Chem.
269:19142–19150. 1994.PubMed/NCBI
|
37
|
Yu LR, Zeng R, Shao XX, Wang N, Xu YH and
Xia QC: Identification of differentially expressed proteins between
human hepatoma and normal liver cell lines by two-dimensional
electrophoresis and liquid chromatography-ion trap mass
spectrometry. Electrophoresis. 21:3058–3068. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Aruga J: The role of Zic genes in neural
development. Mol Cell Neurosci. 26:205–221. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nagai T, Aruga J, Takada S, Günther T,
Spörle R, Schughart K and Mikoshiba K: The expression of the mouse
Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes
in body pattern formation. Dev Biol. 182:299–313. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Merzdorf CS and Sive HL: The zic1 gene is
an activator of Wnt signaling. Int J Dev Biol. 50:611–617. 2006.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Maurus D and Harris WA: Zic-associated
holoprosencephaly: Zebrafish Zic1 controls midline formation and
forebrain patterning by regulating Nodal, Hedgehog, and retinoic
acid signaling. Genes Dev. 23:1461–1473. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang LJ, Jin HC, Wang X, Lam EK, Zhang JB,
Liu X, Chan FK, Si JM and Sung JJ: ZIC1 is downregulated through
promoter hypermethylation in gastric cancer. Biochem Biophys Res
Commun. 379:959–963. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang YY, Jiang JX, Ma H, Han J, Sun ZY,
Liu ZM and Xu ZG: Role of ZIC1 methylation in hepatocellular
carcinoma and its clinical significance. Tumour Biol. 35:7429–7433.
2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Marg A, Schoewel V, Timmel T, Schulze A,
Shah C, Daumke O and Spuler S: Sarcolemmal repair is a slow process
and includes EHD2. Traffic. 13:1286–1294. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Benjamin S, Weidberg H, Rapaport D, Pekar
O, Nudelman M, Segal D, Hirschberg K, Katzav S, Ehrlich M and
Horowitz M: EHD2 mediates trafficking from the plasma membrane by
modulating Rac1 activity. Biochem J. 439:433–442. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Naslavsky N and Caplan S: C-terminal
EH-domain-containing proteins: Consensus for a role in endocytic
trafficking, EH? J Cell Sci. 118:4093–4101. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Posey AD Jr, Pytel P, Gardikiotes K,
Demonbreun AR, Rainey M, George M, Band H and McNally EM: Endocytic
recycling proteins EHD1 and EHD2 interact with fer-1-like-5
(Fer1L5) and mediate myoblast fusion. J Biol Chem. 286:7379–7388.
2011. View Article : Google Scholar :
|