Neutrophils in cancer development and progression: Roles, mechanisms, and implications (Review)
- Authors:
- Xu Zhang
- Wen Zhang
- Xiao Yuan
- Min Fu
- Hui Qian
- Wenrong Xu
-
Affiliations: Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: July 7, 2016 https://doi.org/10.3892/ijo.2016.3616
- Pages: 857-867
This article is mentioned in:
Abstract
Piccard H, Muschel RJ and Opdenakker G: On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol. 82:296–309. 2012. View Article : Google Scholar | |
Brandau S, Dumitru CA and Lang S: Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol. 35:163–176. 2013. View Article : Google Scholar | |
Dumitru CA, Lang S and Brandau S: Modulation of neutrophil granulocytes in the tumor microenvironment: Mechanisms and consequences for tumor progression. Semin Cancer Biol. 23:141–148. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Kloecker G, Fleming C, Bousamra M II, Hansen R, Hu X, Ding C, Cai Y, Xiang D, Donninger H, et al: Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells. OncoImmunology. 3:e9501632014. View Article : Google Scholar | |
Jaganjac M, Poljak-Blazi M, Kirac I, Borovic S, Joerg Schaur R and Zarkovic N: Granulocytes as effective anticancer agent in experimental solid tumor models. Immunobiology. 215:1015–1020. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dissemond J, Weimann TK, Schneider LA, Schneeberger A, Scharffetter-Kochanek K, Goos M and Wagner SN: Activated neutrophils exert antitumor activity against human melanoma cells: Reactive oxygen species-induced mechanisms and their modulation by granulocyte-macrophage-colony-stimulating factor. J Invest Dermatol. 121:936–938. 2003. View Article : Google Scholar : PubMed/NCBI | |
Granot Z, Henke E, Comen EA, King TA, Norton L and Benezra R: Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 20:300–314. 2011. View Article : Google Scholar : PubMed/NCBI | |
López-Lago MA, Posner S, Thodima VJ, Molina AM, Motzer RJ and Chaganti RS: Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene. 32:1752–1760. 2013. View Article : Google Scholar | |
Stockmeyer B, Beyer T, Neuhuber W, Repp R, Kalden JR, Valerius T and Herrmann M: Polymorphonuclear granulocytes induce antibody-dependent apoptosis in human breast cancer cells. J Immunol. 171:5124–5129. 2003. View Article : Google Scholar : PubMed/NCBI | |
Albanesi M, Mancardi DA, Jönsson F, Iannascoli B, Fiette L, Di Santo JP, Lowell CA and Bruhns P: Neutrophils mediate antibody-induced antitumor effects in mice. Blood. 122:3160–3164. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mayadas TN, Cullere X and Lowell CA: The multifaceted functions of neutrophils. Annu Rev Pathol. 9:181–218. 2014. View Article : Google Scholar : | |
Amulic B, Cazalet C, Hayes GL, Metzler KD and Zychlinsky A: Neutrophil function: From mechanisms to disease. Annu Rev Immunol. 30:459–489. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kolaczkowska E and Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13:159–175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scapini P and Cassatella MA: Social networking of human neutrophils within the immune system. Blood. 124:710–719. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Cassatella MA, Costantini C and Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 11:519–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest. 124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Riise RE, Bernson E, Aurelius J, Martner A, Pesce S, Della Chiesa M, Marcenaro E, Bylund J, Hellstrand K, Moretta L, et al: TLR-stimulated neutrophils instruct NK cells to trigger dendritic cell maturation and promote adaptive T cell responses. J Immunol. 195:1121–1128. 2015. View Article : Google Scholar : PubMed/NCBI | |
Powell DR and Huttenlocher A: Neutrophils in the tumor micro-environment. Trends Immunol. 37:41–52. 2016. View Article : Google Scholar | |
Haqqani AS, Sandhu JK and Birnboim HC: Expression of inter-leukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia. 2:561–568. 2000. View Article : Google Scholar | |
Sandhu JK, Privora HF, Wenckebach G and Birnboim HC: Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. Am J Pathol. 156:509–518. 2000. View Article : Google Scholar : PubMed/NCBI | |
Knaapen AM, Güngör N, Schins RP, Borm PJ and Van Schooten FJ: Neutrophils and respiratory tract DNA damage and mutagenesis: A review. Mutagenesis. 21:225–236. 2006. View Article : Google Scholar : PubMed/NCBI | |
Güngör N, Knaapen AM, Munnia A, Peluso M, Haenen GR, Chiu RK, Godschalk RW and van Schooten FJ: Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis. 25:149–154. 2010. View Article : Google Scholar | |
Campregher C, Luciani MG and Gasche C: Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells. Gut. 57:780–787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shang K, Bai YP, Wang C, Wang Z, Gu HY, Du X, Zhou XY, Zheng CL, Chi YY, Mukaida N, et al: Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One. 7:e518482012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang K, Han GC, Wang RX, Xiao H, Hou CM, Guo RF, Dou Y, Shen BF, Li Y, et al: Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/ IL-6 axis. Mucosal Immunol. 7:1106–1115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ning C, Li YY, Wang Y, Han GC, Wang RX, Xiao H, Li XY, Hou CM, Ma YF, Sheng DS, et al: Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis. Mucosal Immunol. 8:1275–1284. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lakritz JR, Poutahidis T, Mirabal S, Varian BJ, Levkovich T, Ibrahim YM, Ward JM, Teng EC, Fisher B, Parry N, et al: Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget. 6:9387–9396. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, et al: NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 6:68182015. View Article : Google Scholar | |
Yan C, Huo X, Wang S, Feng Y and Gong Z: Stimulation of hepatocarcinogenesis by neutrophils upon induction of oncogenic kras expression in transgenic zebrafish. J Hepatol. 63:420–428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Satpathy SR, Jala VR, Bodduluri SR, Krishnan E, Hegde B, Hoyle GW, Fraig M, Luster AD and Haribabu B: Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat Commun. 6:70642015. View Article : Google Scholar : PubMed/NCBI | |
Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, et al: Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 16:219–223. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Cumpian AM, Caetano MS, Ochoa CE, De la Garza MM, Lapid DJ, Mirabolfathinejad SG, Dickey BF, Zhou Q and Moghaddam SJ: Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol Cancer. 12:1542013. View Article : Google Scholar : PubMed/NCBI | |
Hattar K, Franz K, Ludwig M, Sibelius U, Wilhelm J, Lohmeyer J, Savai R, Subtil FS, Dahlem G, Eul B, et al: Interactions between neutrophils and non-small cell lung cancer cells: Enhancement of tumor proliferation and inflammatory mediator synthesis. Cancer Immunol Immunother. 63:1297–1306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Aoki T, Tsuruyama T and Narumiya S: Definition of prostaglandin E2-EP2 signals in the colon tumor microenvironment that amplify inflammation and tumor growth. Cancer Res. 75:2822–2832. 2015. View Article : Google Scholar : PubMed/NCBI | |
Antonio N, Bønnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, Steiniche T, Schmidt H, Feng Y and Martin P: The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 34:2219–2236. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Piao Y, Holmes L, Fuller GN, Henry V, Tiao N and de Groot JF: Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res. 20:187–198. 2014. View Article : Google Scholar | |
Song W, Li L, He D, Xie H, Chen J, Yeh CR, Chang LS, Yeh S and Chang C: Infiltrating neutrophils promote renal cell carcinoma (RCC) proliferation via modulating androgen receptor (AR) → c-Myc signals. Cancer Lett. 368:71–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grégoire M, Guilloton F, Pangault C, Mourcin F, Sok P, Latour M, Amé-Thomas P, Flecher E, Fest T and Tarte K: Neutrophils trigger a NF-κB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas. Oncotarget. 6:16471–16487. 2015. View Article : Google Scholar | |
Ramachandran IR, Condamine T, Lin C, Herlihy SE, Garfall A, Vogl DT, Gabrilovich DI and Nefedova Y: Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Lett. 371:117–124. 2016. View Article : Google Scholar | |
Liang W and Ferrara N: The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res. 4:83–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
Psaila B and Lyden D: The metastatic niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tazawa H, Okada F, Kobayashi T, Tada M, Mori Y, Une Y, Sendo F, Kobayashi M and Hosokawa M: Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: Implication of inflammation-associated carcinogenesis and tumor progression. Am J Pathol. 163:2221–2232. 2003. View Article : Google Scholar : PubMed/NCBI | |
Welch DR, Schissel DJ, Howrey RP and Aeed PA: Tumor-elicited polymorphonuclear cells, in contrast to ‘normal’ circulating poly-morphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA. 86:5859–5863. 1989. View Article : Google Scholar | |
El Rayes T, Catena R, Lee S, Stawowczyk M, Joshi N, Fischbach C, Powell CA, Dannenberg AJ, Altorki NK, Gao D, et al: Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA. 112:16000–16005. 2015. View Article : Google Scholar : PubMed/NCBI | |
Queen MM, Ryan RE, Holzer RG, Keller-Peck CR and Jorcyk CL: Breast cancer cells stimulate neutrophils to produce oncostatin M: Potential implications for tumor progression. Cancer Res. 65:8896–8904. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhao Q, Peng C, Sun L, Li XF and Kuang DM: Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol. 225:438–447. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dumitru CA, Gholaman H, Trellakis S, Bruderek K, Dominas N, Gu X, Bankfalvi A, Whiteside TL, Lang S and Brandau S: Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. Int J Cancer. 129:859–869. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al: Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gaida MM, Steffen TG, Günther F, Tschaharganeh DF, Felix K, Bergmann F, Schirmacher P and Hänsch GM: Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastase-mediated degradation of E-cadherin in pancreatic tumors. Eur J Immunol. 42:3369–3380. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grosse-Steffen T, Giese T, Giese N, Longerich T, Schirmacher P, Hänsch GM and Gaida MM: Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: The role of neutrophils and neutrophil-derived elastase. Clin Dev Immunol. 2012:7207682012. View Article : Google Scholar : PubMed/NCBI | |
Freisinger CM and Huttenlocher A: Live imaging and gene expression analysis in zebrafish identifies a link between neutrophils and epithelial to mesenchymal transition. PLoS One. 9:e1121832014. View Article : Google Scholar : PubMed/NCBI | |
Hu P, Shen M, Zhang P, Zheng C, Pang Z, Zhu L and Du J: Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells. Tumour Biol. 36:7789–7796. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Lin W, Yeh S, Li L and Chang C: Infiltrating neutrophils increase bladder cancer cell invasion via modulation of androgen receptor (AR)/MMP13 signals. Oncotarget. 6:43081–43089. 2015.PubMed/NCBI | |
Song W, Yeh CR, He D, Wang Y, Xie H, Pang ST, Chang LS, Li L and Yeh S: Infiltrating neutrophils promote renal cell carcinoma progression via VEGFa/HIF2α and estrogen receptor β signals. Oncotarget. 6:19290–19304. 2015. View Article : Google Scholar : PubMed/NCBI | |
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJ, Ciampricotti M, Hawinkels LJ, Jonkers J, et al: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 522:345–348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu QD, Wang JH, Condron C, Bouchier-Hayes D and Redmond HP: Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol. 280:C814–C822. 2001.PubMed/NCBI | |
Strell C, Lang K, Niggemann B, Zaenker KS and Entschladen F: Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res. 316:138–148. 2010. View Article : Google Scholar | |
Huh SJ, Liang S, Sharma A, Dong C and Robertson GP: Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 70:6071–6082. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P and Ferri LE: Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 72:3919–3927. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tabariès S, Ouellet V, Hsu BE, Annis MG, Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM and Siegel PM: Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res. 17:452015. View Article : Google Scholar : PubMed/NCBI | |
Tazzyman S, Lewis CE and Murdoch C: Neutrophils: Key mediators of tumour angiogenesis. Int J Exp Pathol. 90:222–231. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tazzyman S, Niaz H and Murdoch C: Neutrophil-mediated tumour angiogenesis: Subversion of immune responses to promote tumour growth. Semin Cancer Biol. 23:149–158. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nozawa H, Chiu C and Hanahan D: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA. 103:12493–12498. 2006. View Article : Google Scholar : PubMed/NCBI | |
Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L and Quigley JP: Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia. 16:771–788. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY and Zheng L: Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 54:948–955. 2011. View Article : Google Scholar | |
Ardi VC, Kupriyanova TA, Deryugina EI and Quigley JP: Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA. 104:20262–20267. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP and Deryugina EI: Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 179:1455–1470. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R and Ochoa AC: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69:1553–1560. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rotondo R, Barisione G, Mastracci L, Grossi F, Orengo AM, Costa R, Truini M, Fabbi M, Ferrini S and Barbieri O: IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer. 125:887–893. 2009. View Article : Google Scholar : PubMed/NCBI | |
He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, Xie X, Wang X, Fei R, Wei L, et al: Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1412015. View Article : Google Scholar : PubMed/NCBI | |
Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS, Buczkowski KA, Liu Y, Awad MM, Denning WL, et al: STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 76:999–1008. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Qiao X, Shi H, Han X, Liu W, Tian X and Zeng X: Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation. Tumour Biol. 37:5397–5404. 2016. View Article : Google Scholar | |
Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, et al: Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 89:311–317. 2011. View Article : Google Scholar | |
Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Horng W, Fridlender G, Bayuh R, Worthen GS, et al: Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS One. 7:e315242012. View Article : Google Scholar : PubMed/NCBI | |
Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM, Sloan EK, Parker BS, Bowtell DD, Smyth MJ, et al: Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72:3906–3911. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, Chen MB, Krall JA, DeCock J, Zervantonakis IK, et al: Neutrophils suppress intraluminal NK-cell mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 6:630–649. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z and Fridlender ZG: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17 a new mechanism of impaired antitumor immunity. Int J Cancer. 135:1178–1186. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. S0016-5085(16)00231-6. 2016. | |
Casbon AJ, Reynaud D, Park C, Khuc E, Gan DD, Schepers K, Passegué E and Werb Z: Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA. 112:E566–E575. 2015. View Article : Google Scholar : PubMed/NCBI | |
Branzk N and Papayannopoulos V: Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol. 35:513–530. 2013. View Article : Google Scholar : PubMed/NCBI | |
Demers M and Wagner DD: NETosis: A new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost. 40:277–283. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cools-Lartigue J, Spicer J, Najmeh S and Ferri L: Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 71:4179–4194. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH and Wagner DD: Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 107:15880–15885. 2010. View Article : Google Scholar : PubMed/NCBI | |
Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD: Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI | |
Demers M and Wagner DD: Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. OncoImmunology. 2:e229462013. View Article : Google Scholar : PubMed/NCBI | |
Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P and Ferri L: Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 674842013.PubMed/NCBI | |
Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A and Olsson AK: Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res. 75:2653–2662. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guglietta S, Chiavelli A, Zagato E, Krieg C, Gandini S, Ravenda PS, Bazolli B, Lu B, Penna G and Rescigno M: Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun. 7:110372016. View Article : Google Scholar : PubMed/NCBI | |
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H and Tsung A: Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76:1367–1380. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, et al: Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA. 109:2491–2496. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Larco JE, Wuertz BR and Furcht LT: The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res. 10:4895–4900. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, et al: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 40:785–800. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, et al: The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med. 210:1711–1728. 2013. View Article : Google Scholar : PubMed/NCBI | |
Raccosta L, Fontana R, Traversari C and Russo V: Oxysterols recruit tumor-supporting neutrophils within the tumor micro-environment: The many facets of tumor-derived oxysterols. OncoImmunology. 2:e264692013. View Article : Google Scholar | |
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Dai Z, Zhou ZJ, Chen Q, Wang Z, Xiao YS, Hu ZQ, Huang XY, Yang GH, Shi YH, et al: CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangio-carcinoma by recruiting infiltrative intratumoral neutrophils. Carcinogenesis. 35:597–605. 2014. View Article : Google Scholar | |
Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Hömig-Hölzel C, et al: Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 507:109–113. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trellakis S, Farjah H, Bruderek K, Dumitru CA, Hoffmann TK, Lang S and Brandau S: Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors. Int J Immunopathol Pharmacol. 24:683–693. 2011.PubMed/NCBI | |
Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N, et al: Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med. 201:105–115. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li XF, Chen DP, Ouyang FZ, Chen MM, Wu Y, Kuang DM and Zheng L: Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol. 62:131–139. 2015. View Article : Google Scholar | |
Andzinski L, Wu CF, Lienenklaus S, Kröger A, Weiss S and Jablonska J: Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN-β. Int J Cancer. 136:572–583. 2015. | |
Jablonska J, Wu CF, Andzinski L, Leschner S and Weiss S: CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer. 134:1346–1358. 2014. View Article : Google Scholar | |
Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H, Granot Z, et al: MET is required for the recruitment of anti-tumoural neutrophils. Nature. 522:349–353. 2015. View Article : Google Scholar : PubMed/NCBI | |
Galli SJ, Borregaard N and Wynn TA: Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat Immunol. 12:1035–1044. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gabrilovich DI, Ostrand-Rosenberg S and Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 12:253–268. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, et al: Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10:562–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J and Fridlender ZG: Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother. 62:1745–1756. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Wei JJ, Yuan Y, Sun R, Li D, Luo J, Liao SJ, Zhou YH, Shu Y, Wang Q, et al: IL-6 cooperates with G-CSF to induce protumor function of neutrophils in bone marrow by enhancing STAT3 activation. J Immunol. 190:5882–5893. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, Mao F, Wang M, Zhu W, Qian H, et al: The IL-6-STAT3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 5:e12952014. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhou Y, Dong K, Sun Z, Zhao D, Wang W, Yu G, Liu W, Xu G, Han Z, et al: Programming of the development of tumor-promoting neutrophils by mesenchymal stromal cells. Cell Physiol Biochem. 33:1802–1814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F and von der Maase H: Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol. 27:4709–4717. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A, Scherag A, Hütte J, Dominas N, Lehnerdt GF, et al: Polymorphonuclear granulocytes in human head and neck cancer: Enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer. 129:2183–2193. 2011. View Article : Google Scholar | |
Jensen TO, Schmidt H, Møller HJ, Donskov F, Høyer M, Sjoegren P, Christensen IJ and Steiniche T: Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer. 118:2476–2485. 2012. View Article : Google Scholar | |
Chen X, Sun J, Song Y, Gao P, Zhao J, Huang X, Liu B, Xu H and Wang Z: The novel long noncoding RNA AC138128.1 may be a predictive biomarker in gastric cancer. Med Oncol. 31:2622014. View Article : Google Scholar : PubMed/NCBI | |
Yang SZ, Ji WH, Mao WM and Ling ZQ: Elevated levels of preoperative circulating CD44+ lymphocytes and neutrophils predict poor survival for non-small cell lung cancer patients. Clin Chim Acta. 439:172–177. 2015. View Article : Google Scholar | |
Rao HL, Chen JW, Li M, Xiao YB, Fu J, Zeng YX, Cai MY and Xie D: Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS One. 7:e308062012. View Article : Google Scholar | |
Zhao JJ, Pan K, Wang W, Chen JG, Wu YH, Lv L, Li JJ, Chen YB, Wang DD, Pan QZ, et al: The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS One. 7:e336552012. View Article : Google Scholar : PubMed/NCBI | |
Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS and Xu YF: Intra-tumoral neutrophils: A poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol. 54:497–505. 2011. View Article : Google Scholar | |
Wang N, Feng Y, Wang Q, Liu S, Xiang L, Sun M, Zhang X, Liu G, Qu X and Wei F: Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS One. 9:e899912014. View Article : Google Scholar : PubMed/NCBI | |
Hu P, Pang Z, Shen H, Wang G, Sun H and Du J: Tumor-infiltrating neutrophils predict poor outcome in adenocarcinoma of the esophagogastric junction. Tumour Biol. 36:2965–2971. 2015. View Article : Google Scholar | |
Wang J, Jia Y, Wang N, Zhang X, Tan B, Zhang G and Cheng Y: The clinical significance of tumor-infiltrating neutrophils and neutrophil-to-CD8+ lymphocyte ratio in patients with resectable esophageal squamous cell carcinoma. J Transl Med. 12:72014. View Article : Google Scholar | |
Shen M, Hu P, Donskov F, Wang G, Liu Q and Du J: Tumor-associated neutrophils as a new prognostic factor in cancer: A systematic review and meta-analysis. PLoS One. 9:e982592014. View Article : Google Scholar : PubMed/NCBI | |
Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, et al: Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J Natl Cancer Inst. 106:dju1242014. View Article : Google Scholar : PubMed/NCBI | |
Ferrucci PF, Gandini S, Battaglia A, Alfieri S, Di Giacomo AM, Giannarelli D, Cappellini GC, De Galitiis F, Marchetti P, Amato G, et al: Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer. 112:1904–1910. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gregory AD and Houghton AM: Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 71:2411–2416. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Luo J, Li D, Shu Y, Luo C, Wang SS, Qin J, Zhang GM and Feng ZH: Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells. Oncotarget. 5:12621–12634. 2014. View Article : Google Scholar | |
Pang Y, Gara SK, Achyut BR, Li Z, Yan HH, Day CP, Weiss JM, Trinchieri G, Morris JC and Yang L: TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 3:936–951. 2013. View Article : Google Scholar : PubMed/NCBI | |
Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S and Jablonska J: Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 138:1982–1993. 2016. View Article : Google Scholar | |
Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, Huels D, Olson MF, Das S, Nibbs RJ, et al: Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 122:3127–3144. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tazzyman S, Barry ST, Ashton S, Wood P, Blakey D, Lewis CE and Murdoch C: Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. Int J Cancer. 129:847–858. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wculek SK and Malanchi I: Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 528:413–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shrestha S, Noh JM, Kim SY, Ham HY, Kim YJ, Yun YJ, Kim MJ, Kwon MS, Song DK and Hong CW: Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. OncoImmunology. 5:e10677442015. View Article : Google Scholar | |
Hagerling C and Werb Z: Neutrophils: Critical components in experimental animal models of cancer. Semin Immunol. 28:197–204. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW, Wang Z, Fan J, Dai Z and Zhou J: CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/ Akt/GSK-3β/Snail signaling. Cancer Lett. 358:124–135. 2015. View Article : Google Scholar | |
Benevides L, da Fonseca DM, Donate PB, Tiezzi DG, De Carvalho DD, de Andrade JM, Martins GA and Silva JS: IL17 Promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75:3788–3799. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B, Mayaud C, Antoine M, Soler P and Cadranel J: Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor progression and death. Cancer Res. 63:1405–1412. 2003.PubMed/NCBI | |
Ibrahim SA, Katara GK, Kulshrestha A, Jaiswal MK, Amin MA and Beaman KD: Breast cancer associated a2 isoform vacuolar ATPase immunomodulates neutrophils: Potential role in tumor progression. Oncotarget. 6:33033–33045. 2015.PubMed/NCBI |