Trophic and neurotrophic factors in human pituitary adenomas (Review)
- Authors:
- Marialuisa Spoletini
- Samanta Taurone
- Mario Tombolini
- Antonio Minni
- Giancarlo Altissimi
- Venceslao Wierzbicki
- Felice Giangaspero
- Pier Paolo Parnigotto
- Marco Artico
- Lia Bardella
- Enzo Agostinelli
- Francesco Saverio Pastore
-
Affiliations: Department of Anatomy, Histology, Forensic Medicine and Orthopedics, ‘Sapienza’ University of Rome, Rome, Italy, Department of Sensory Organs, ‘Sapienza’ University of Rome, Rome, Italy, Neurosurgery Department, Army Hospital of Rome ‘Celio’, Rome, Italy, Department of Radiology, Oncology and Anatomic Pathology, ‘Sapienza’ University of Rome, Rome, Italy, Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) Onlus, Padua, Italy, Department of Neurology and Psychiatry, ‘Sapienza’ University of Rome, Rome, Italy, Department of Biochemical Sciences ‘A. Rossi Fanelli’, ‘Sapienza’ University of Rome, Rome, Italy, Department of Systems' Medicine, Division of Neurosurgery, University of Rome ‘Tor Vergata’, Rome, Italy - Published online on: September 5, 2017 https://doi.org/10.3892/ijo.2017.4120
- Pages: 1014-1024
This article is mentioned in:
Abstract
Rosso L and Mienville JM: Pituicyte modulation of neurohormone output. Glia. 57:235–243. 2009. View Article : Google Scholar | |
Doniach I: Histopathology of the pituitary. Clin Endocrinol Metab. 14:765–789. 1985. View Article : Google Scholar : PubMed/NCBI | |
Chauvet N, El-Yandouzi T, Mathieu MN, Schlernitzauer A, Galibert E, Lafont C, Le Tissier P, Robinson IC, Mollard P and Coutry N: Characterization of adherens junction protein expression and localization in pituitary cell networks. J Endocrinol. 202:375–387. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stojilkovic SS: A novel view of the function of pituitary folliculostellate cell network. Trends Endocrinol Metab. 12:378–380. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cristina C, Díaz-Torga G, Baldi A, Góngora A, Rubinstein M, Low MJ and Becú-Villalobos D: Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice. Endocrinology. 146:2952–2962. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alfer J, Neulen J and Gaumann A: Lactotrophs: The new and major source for VEGF secretion and the influence of ECM on rat pituitary function in vitro. Oncol Rep. 33:2129–2134. 2015.PubMed/NCBI | |
Chauvet N, Romanò N, Lafont C, Guillou A, Galibert E, Bonnefont X, Le Tissier P, Fedele M, Fusco A, Mollard P, et al: Complementary actions of dopamine D2 receptor agonist and anti-vegf therapy on tumoral vessel normalization in a transgenic mouse model. Int J Cancer. 140:2150–2161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann A, Boekhoff S, Gebhardt U, Sterkenburg AS, Daubenbüchel AM, Eveslage M and Müller HL: History before diagnosis in childhood craniopharyngioma: Associations with initial presentation and long-term prognosis. Eur J Endocrinol. 173:853–862. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mende KC, Matschke J, Burkhardt T, Saeger W, Buslei R, Buchfelder M, Fahlbusch R, Westphal M and Flitsch J: Pituicytoma-An outlook on possible targeted therapies. CNS Neurosci Ther. 23:620–626. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Yang Z, Wang Z, Zhou Q, Li S, Wang X, Wang B, Zhao F and Liu P: Granular cell tumors in the central nervous system: A report on eight cases and a literature review. Br J Neurosurg. 30:611–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mumert ML, Walsh MT, Chin SS and Couldwell WT: Cystic granular cell tumor mimicking Rathke cleft cyst. J Neurosurg. 114:325–328. 2011. View Article : Google Scholar | |
Larkin S and Ansorge O: Pathology and pathogenesis of pituitary adenomas and other sellar lesions Endotext [Internet]. De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F and Vinik A: MDText.com, Inc. 2000; South Dartmouth, MA: 2017 | |
Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML and McCutcheon IE: The prevalence of pituitary adenomas: A systematic review. Cancer. 101:613–619. 2004. View Article : Google Scholar : PubMed/NCBI | |
Asa SL: Tumors of the pituitary gland. Atlas of Tumor Pathology. Rosai J: (3rd series Fascicle 22). Armed Forces Institute of Pathology (AFIP); Washington DC: pp. 1–214. 1998 | |
Blevins LS Jr, Verity DK and Allen G: Aggressive pituitary tumors. Oncology (Williston Park). 12:1307–1312. 1315discussion 1315–1318. 1998. | |
Asa SL and Ezzat S: The pathogenesis of pituitary tumours. Nat Rev Cancer. 2:836–849. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nammour GM, Ybarra J, Naheedy MH, Romeo JH and Aron DC: Incidental pituitary macroadenoma: A population-based study. Am J Med Sci. 314:287–291. 1997.PubMed/NCBI | |
Katznelson L, Alexander JM and Klibanski A: Clinical review 45: Clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 76:1089–1094. 1993.PubMed/NCBI | |
Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G and Savastano S: Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer. 15:905–915. 2008. View Article : Google Scholar : PubMed/NCBI | |
Daly AF, Tichomirowa MA and Beckers A: The epidemiology and genetics of pituitary adenomas (Review). Best Pract Res Clin Endocrinol Metab. 23:543–554. 2009. View Article : Google Scholar : PubMed/NCBI | |
Galland F, Lacroix L, Saulnier P, Dessen P, Meduri G, Bernier M, Gaillard S, Guibourdenche J, Fournier T, Evain-Brion D, et al: Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr Relat Cancer. 17:361–371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Syro LV, Rotondo F, Ramirez A, Di Ieva A, Sav MA, Restrepo LM, Serna CA and Kovacs K: Progress in the diagnosis and classification of pituitary adenomas. Front Endocrinol (Lausanne). 6:972015. | |
Kovacs K, Scheithauer BW, Horvath E and Lloyd RV: The World Health Organization classification of adenohypophysial neoplasms. A proposed five-tier scheme. Cancer. 78:502–510. 1996. View Article : Google Scholar : PubMed/NCBI | |
Jagannathan J, Dumont AS, Prevedello DM, Lopes B, Oskouian RJ, Jane JA Jr and Laws ER Jr: Genetics of pituitary adenomas: Current theories and future implications. Neurosurg Focus. 19:E42005. | |
Wakefield LM and Roberts AB: TGF-beta signaling: Positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 12:22–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFbeta in cancer (Review). Cell. 134:215–230. 2008. View Article : Google Scholar | |
Jia W, Sander AJ, Jia G, Ni M, Liu X, Lu R and Jiang WG: Vascular endothelial growth inhibitor (VEGI) is an independent indicator for invasion in human pituitary adenomas. Anticancer Res. 33:3815–3822. 2013.PubMed/NCBI | |
Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K and Stefaneanu L: Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol. 10:229–235. 1999. View Article : Google Scholar | |
Artico M, Bianchi E, Magliulo G, De Vincentiis M, De Santis E, Orlandi A, Santoro A, Pastore FS, Giangaspero F, Caruso R, et al: Neurotrophins, their receptors and KI-67 in human GH-secreting pituitary adenomas: An immunohistochemical analysis. Int J Immunopathol Pharmacol. 25:117–125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ernst M and Jenkins BJ: Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet. 20:23–32. 2004. View Article : Google Scholar | |
Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G and Thoenen H: Disruption of the CNTF gene results in motor neuron degeneration. Nature. 365:27–32. 1993. View Article : Google Scholar : PubMed/NCBI | |
Linker RA, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, et al: CNTF is a major protective factor in demyelinating CNS disease: A neurotrophic cytokine as modulator in neuroinflammation. Nat Med. 8:620–624. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ray D and Melmed S: Pituitary cytokine and growth factor expression and action. Endocr Rev. 18:206–228. 1997. View Article : Google Scholar : PubMed/NCBI | |
Perez Castro C, Nagashima AC, Pereda MP, Goldberg V, Chervin A, Largen P, Renner U, Stalla GK and Arzt E: The gp130 cytokines interleukin-11 and ciliary neurotropic factor regulate through specific receptors the function and growth of lactosomatotropic and folliculostellate pituitary cell lines. Endocrinology. 141:1746–1753. 2000. View Article : Google Scholar : PubMed/NCBI | |
Perez Castro C, Carbia Nagashima A, Páez Pereda M, Goldberg V, Chervin A, Carrizo G, Molina H, Renner U, Stalla GK and Arzt E: Effects of the gp130 cytokines ciliary neurotropic factor (CNTF) and interleukin-11 on pituitary cells: CNTF receptors on human pituitary adenomas and stimulation of prolactin and GH secretion in normal rat anterior pituitary aggregate cultures. J Endocrinol. 169:539–547. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Pang Y and Moses HL: TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31:220–227. 2010. View Article : Google Scholar : PubMed/NCBI | |
Johnson MD, Shaw AK, O'Connell MJ, Sim FJ and Moses HL: Analysis of transforming growth factor β receptor expression and signaling in higher grade meningiomas. J Neurooncol. 103:277–285. 2011. View Article : Google Scholar | |
Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, et al: High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 11:147–160. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Li Q, Zhou X, Yu J, Mu Y, Munker S, Xu C, Shen Z, Müllenbach R, Liu Y, et al: Decreased levels of active SMAD2 correlate with poor prognosis in gastric cancer. PLoS One. 7:e356842012. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar | |
Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, et al: Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389:631–635. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Li Z, Wu D, Li C and Zhang Y: Smad3 and phospho-Smad3 are potential markers of invasive nonfunctioning pituitary adenomas. Onco Targets Ther. 9:2265–2271. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elenkova A, Atanassova I, Kirilov G, Vasilev V, Kalinov K and Zacharieva S: Transforming growth factor β1 is not a reliable biomarker for valvular fibrosis but could be a potential serum marker for invasiveness of prolactinomas (pilot study). Eur J Endocrinol. 169:299–306. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhao KN, Masci PP, Lakhani SR, Antonsson A, Simpson PT and Vitetta L: TGFβ isoforms and receptors mRNA expression in breast tumours: Prognostic value and clinical implications. BMC Cancer. 15:10102015. View Article : Google Scholar | |
Liu ZY, Zhang GL, Wang MM, Xiong YN and Cui HQ: MicroRNA-663 targets TGFB1 and regulates lung cancer proliferation. Asian Pac J Cancer Prev. 12:2819–2823. 2011.PubMed/NCBI | |
Wang Y, Jiang M, Li Z, Wang J, Du C, Yanyang L, Yu Y, Wang X, Zhang N, Zhao M, et al: Hypoxia and TGF-β1 lead to endostatin resistance by cooperatively increasing cancer stem cells in A549 transplantation tumors. Cell Biosci. 5:722015. View Article : Google Scholar | |
McAndrew J, Paterson AJ, Asa SL, McCarthy KJ and Kudlow JE: Targeting of transforming growth factor-alpha expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology. 136:4479–4488. 1995. View Article : Google Scholar : PubMed/NCBI | |
Airaksinen MS, Titievsky A and Saarma M: GDNF family neurotrophic factor signaling: Four masters, one servant? Mol Cell Neurosci. 13:313–325. 1999. View Article : Google Scholar : PubMed/NCBI | |
Airaksinen MS and Saarma M: The GDNF family: Signalling, biological functions and therapeutic value. Nat Rev Neurosci. 3:383–394. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP and Klein R: Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 5:e392007. View Article : Google Scholar : PubMed/NCBI | |
Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, et al: Characterization of a multicomponent receptor for GDNF. Nature. 382:80–83. 1996. View Article : Google Scholar : PubMed/NCBI | |
Robertson K and Mason I: The GDNF-RET signalling partnership. Trends Genet. 13:1–3. 1997. View Article : Google Scholar : PubMed/NCBI | |
Urbano AG, Suárez-Peñaranda JM, Diéguez C and Alvarez CV: GDNF and RET-gene expression in anterior pituitary-cell types. Endocrinology. 141:1893–1896. 2000. View Article : Google Scholar : PubMed/NCBI | |
Japón MA, Urbano AG, Sáez C, Segura DI, Cerro AL, Diéguez C and Alvarez CV: Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors. J Clin Endocrinol Metab. 87:1879–1884. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lykissas MG, Batistatou AK, Charalabopoulos KA and Beris AE: The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res. 4:143–151. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Chen L, Ren Y, Ji Y, Liu W, Liu J, Yan Q, Cheng L and Sun YE: Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies. Biosci Trends. 7:202–208. 2013.PubMed/NCBI | |
Wiesmann C and de Vos AM: Nerve growth factor: Structure and function. Cell Mol Life Sci. 58:748–759. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mancino M, Ametller E, Gascón P and Almendro V: The neuronal influence on tumor progression. Biochim Biophys Acta. 1816:105–118. 2011.PubMed/NCBI | |
Krüttgen A, Schneider I and Weis J: The dark side of the NGF family: Neurotrophins in neoplasias. Brain Pathol. 16:304–310. 2006. View Article : Google Scholar : PubMed/NCBI | |
Molloy NH, Read DE and Gorman AM: Nerve growth factor in cancer cell death and survival. Cancers (Basel). 3:510–530. 2011. View Article : Google Scholar | |
MacGrogan D, Saint-André JP and Dicou E: Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem. 59:1381–1391. 1992. View Article : Google Scholar : PubMed/NCBI | |
Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X and Hondermarck H: Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 17:1741–1752. 2011. View Article : Google Scholar : PubMed/NCBI | |
Varon S, Nomura J and Shooter EM: The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry. 6:2202–2209. 1967. View Article : Google Scholar : PubMed/NCBI | |
Thoenen H and Barde YA: Physiology of nerve growth factor. Physiol Rev. 60:1284–1335. 1980.PubMed/NCBI | |
Fahnestock M, Yu G, Michalski B, Mathew S, Colquhoun A, Ross GM and Coughlin MD: The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J Neurochem. 89:581–592. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seidel MF, Herguijuela M, Forkert R and Otten U: Nerve growth factor in rheumatic diseases. Semin Arthritis Rheum. 40:109–126. 2010. View Article : Google Scholar | |
Masoudi R, Ioannou MS, Coughlin MD, Pagadala P, Neet KE, Clewes O, Allen SJ, Dawbarn D and Fahnestock M: Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J Biol Chem. 284:18424–18433. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haase G, Pettmann B, Raoul C and Henderson CE: Signaling by death receptors in the nervous system. Curr Opin Neurobiol. 18:284–291. 2008. View Article : Google Scholar : PubMed/NCBI | |
Barker PA: High affinity not in the vicinity? Neuron. 53:1–4. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nakagawara A: Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 169:107–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Walsh EM, Kim R, Del Valle L, Weaver M, Sheffield J, Lazarovici P and Marcinkiewicz C: Importance of interaction between nerve growth factor and α9β1 integrin in glial tumor angiogenesis. Neurooncol. 14:890–901. 2012. | |
Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M, Milanezi F, Schmitt FC and Ashworth A: Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol. 19:307–319. 2006. View Article : Google Scholar : PubMed/NCBI | |
Küchler J, Hartmann W, Waha A, Koch A, Endl E, Wurst P, Kindler D, Mikeska T, Waha A, Goodyer CG, et al: p75(NTR) induces apoptosis in medulloblastoma cells. Int J Cancer. 128:1804–1812. 2011. View Article : Google Scholar | |
Fiorentini C, Guerra N, Facchetti M, Finardi A, Tiberio L, Schiaffonati L, Spano P and Missale C: Nerve growth factor regulates dopamine D(2) receptor expression in prolactinoma cell lines via p75(NGFR)-mediated activation of nuclear factor-kappaB. Mol Endocrinol. 16:353–366. 2002.PubMed/NCBI | |
Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP and Hondermarck H: Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem. 276:17864–17870. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sortino MA, Condorelli F, Vancheri C, Chiarenza A, Bernardini R, Consoli U and Canonico PL: Mitogenic effect of nerve growth factor (NGF) in LNCaP prostate adenocarcinoma cells: Role of the high- and low-affinity NGF receptors. Mol Endocrinol. 14:124–136. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hughes AL, Gollapudi L, Sladek TL and Neet KE: Mediation of nerve growth factor-driven cell cycle arrest in PC12 cells by p53. Simultaneous differentiation and proliferation subsequent to p53 functional inactivation. J Biol Chem. 275:37829–37837. 2000. View Article : Google Scholar : PubMed/NCBI | |
Decker SJ: Nerve growth factor-induced growth arrest and induction of p21Cip1/WAF1 in NIH-3T3 cells expressing TrkA. J Biol Chem. 270:30841–30844. 1995. View Article : Google Scholar : PubMed/NCBI | |
Krygier S and Djakiew D: Neurotrophin receptor p75(NTR) suppresses growth and nerve growth factor-mediated metastasis of human prostate cancer cells. Int J Cancer. 98:1–7. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khwaja F and Djakiew D: Inhibition of cell-cycle effectors of proliferation in bladder tumor epithelial cells by the p75NTR tumor suppressor. Mol Carcinog. 36:153–160. 2003. View Article : Google Scholar : PubMed/NCBI | |
Weis C, Wiesenhofer B and Humpel C: Nerve growth factor plays a divergent role in mediating growth of rat C6 glioma cells via binding to the p75 neurotrophin receptor. J Neurooncol. 56:59–67. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zilfou JT and Lowe SW: Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 1:a0018832009. View Article : Google Scholar : | |
Rivlin N, Brosh R, Oren M and Rotter V: Mutations in the p53 tumor suppressor gene: Important milestones at the various Steps of tumorigenesis. Genes Cancer. 2:466–474. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tanizaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F and Lloyd RV: P53 gene mutations in pituitary carcinomas. Endocr Pathol. 18:217–222. 2007. View Article : Google Scholar : PubMed/NCBI | |
Borrelli E, Sawchenko PE and Evans RM: Pituitary hyperplasia induced by ectopic expression of nerve growth factor. Proc Natl Acad Sci USA. 89:2764–2768. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N and Davis-Smyth T: The biology of vascular endothelial growth factor (Review). Endocr Rev. 18:4–25. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fukui S, Nawashiro H, Otani N, Ooigawa H, Yano A, Nomura N, Tokumaru AM, Miyazawa T, Ohnuki A, Tsuzuki N, et al: Vascular endothelial growth factor expression in pituitary adenomas. Acta Neurochir (Suppl). 86:519–521. 2003. | |
Niveiro M, Aranda FI, Peiró G, Alenda C and Picó A: Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol. 36:1090–1095. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pan LX, Chen ZP, Liu YS and Zhao JH: Magnetic resonance imaging and biological markers in pituitary adenomas with invasion of the cavernous sinus space. J Neurooncol. 74:71–76. 2005. View Article : Google Scholar : PubMed/NCBI | |
Arita K, Kurisu K, Tominaga A, Sugiyama K, Eguchi K, Hama S, Yoshioka H, Yamasaki F and Kanou Y: Relationship between intratumoral hemorrhage and overexpression of vascular endothelial growth factor (VEGF) in pituitary adenoma. Hiroshima J Med Sci. 53:23–27. 2004.PubMed/NCBI | |
Sondell M, Sundler F and Kanje M: Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci. 12:4243–4254. 2000. View Article : Google Scholar : PubMed/NCBI | |
Maeda K, Chung YS, Takatsuka S, Ogawa Y, Sawada T, Yamashita Y, Onoda N, Kato Y, Nitta A and Arimoto Y: Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol. 13:477–481. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ochoa AL, Mitchner NA, Paynter CD, Morris RE and Ben-Jonathan N: Vascular endothelial growth factor in the rat pituitary: Differential distribution and regulation by estrogen. J Endocrinol. 165:483–492. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vidal S, Lloyd RV, Moya L, Scheithauer BW and Kovacs K: Expression and distribution of vascular endothelial growth factor receptor Flk-1 in the rat pituitary. J Histochem Cytochem. 50:533–540. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yamada S and Takada K: Angiogenesis in pituitary adenomas. Microsc Res Tech. 60:236–243. 2003. View Article : Google Scholar : PubMed/NCBI | |
McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, Hussain S, Sheppard MC, Franklyn JA and Gittoes NJ: Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 87:4238–4244. 2002. View Article : Google Scholar : PubMed/NCBI | |
Banerjee SK, Zoubine MN, Tran TM, Weston AP and Campbell DR: Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol. 16:253–260. 2000.PubMed/NCBI | |
Kim K, Yoshida D and Teramoto A: Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. Endocr Pathol. 16:115–121. 2005. View Article : Google Scholar : PubMed/NCBI | |
Onofri C, Carbia Nagashima A, Schaaf L, Feirer M, Lohrer P, Stummer W, Berner S, Chervin A, Goldberg V, Stalla GK, et al: Estradiol stimulates vascular endothelial growth factor and interleukin-6 in human lactotroph and lactosomatotroph pituitary adenomas. Exp Clin Endocrinol Diabetes. 112:18–23. 2004. View Article : Google Scholar : PubMed/NCBI | |
Viacava P, Gasperi M, Acerbi G, Manetti L, Cecconi E, Bonadio AG, Naccarato AG, Acerbi F, Parenti G, Lupi I, et al: Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest. 26:23–28. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cristina C, Perez-Millan MI, Luque G, Dulce RA, Sevlever G, Berner SI and Becu-Villalobos D: VEGF and CD31 association in pituitary adenomas. Endocr Pathol. 21:154–160. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lohrer P, Gloddek J, Hopfner U, Losa M, Uhl E, Pagotto U, Stalla GK and Renner U: Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro. Neuroendocrinology. 74:95–105. 2001. View Article : Google Scholar : PubMed/NCBI | |
Korsisaari N, Ross J, Wu X, Kowanetz M, Pal N, Hall L, Eastham-Anderson J, Forrest WF, Van Bruggen N, Peale FV, et al: Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin Cancer Res. 14:249–258. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fowkes RC and Vlotides G: Hypoxia-induced VEGF production 'RSUMEs' in pituitary adenomas. Endocr Relat Cancer. 19:C1–C5. 2012. View Article : Google Scholar | |
Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, et al: VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. FASEB J. 13:181–189. 1999.PubMed/NCBI | |
Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS and Targan SR: The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 178:4033–4038. 2007. View Article : Google Scholar : PubMed/NCBI | |
Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, et al: TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 16:479–492. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bamias G, Martin C III, Marini M, Hoang S, Mishina M, Ross WG, Sachedina MA, Friel CM, Mize J, Bickston SJ, et al: Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 171:4868–4874. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liang PH, Tian F, Lu Y, Duan B, Stolz DB and Li LY: Vascular endothelial growth inhibitor (VEGI; TNFSF15) inhibits bone marrow-derived endothelial progenitor cell incorporation into Lewis lung carcinoma tumors. Angiogenesis. 14:61–68. 2011. View Article : Google Scholar : | |
Zhang N, Sanders AJ, Ye L, Kynaston HG and Jiang WG: Vascular endothelial growth inhibitor, expression in human prostate cancer tissue and the impact on adhesion and migration of prostate cancer cells in vitro. Int J Oncol. 35:1473–1480. 2009.PubMed/NCBI | |
Parr C, Gan CH, Watkins G and Jiang WG: Reduced vascular endothelial growth inhibitor (VEGI) expression is associated with poor prognosis in breast cancer patients. Angiogenesis. 9:73–81. 2006. View Article : Google Scholar : PubMed/NCBI | |
Haridas V, Shrivastava A, Su J, Yu GL, Ni J, Liu D, Chen SF, Ni Y, Ruben SM, Gentz R, et al: VEGI, a new member of the TNF family activates nuclear factor-kappa B and c-Jun N-terminal kinase and modulates cell growth. Oncogene. 18:6496–6504. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Gu X, Chen L, Yao Z, Song J, Niu X, Xiang R, Cheng T, Qin Z, Deng W, et al: Interferon-γ produced by tumor-infiltrating NK cells and CD4+ T cells downregulates TNFSF15 expression in vascular endothelial cells. Angiogenesis. 17:529–540. 2014. View Article : Google Scholar | |
Yu J, Tian S, Metheny-Barlow L, Chew LJ, Hayes AJ, Pan H, Yu GL and Li LY: Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res. 89:1161–1167. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kaptein A, Jansen M, Dilaver G, Kitson J, Dash L, Wang E, Owen MJ, Bodmer JL, Tschopp J and Farrow SN: Studies on the interaction between TWEAK and the death receptor WSL-1/TRAMP (DR3). FEBS Lett. 485:135–141. 2000. View Article : Google Scholar : PubMed/NCBI | |
Locksley RM, Killeen N and Lenardo MJ: The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 104:487–501. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gospodarowicz D, Jones KL and Sato G: Purification of a growth factor for ovarian cells from bovine pituitary glands. Proc Natl Acad Sci USA. 71:2295–2299. 1974. View Article : Google Scholar : PubMed/NCBI | |
Ezzat S, Zheng L and Asa SL: Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: A mechanism underlying pituitary neoplasia. Mol Endocrinol. 18:2543–2552. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gospodarowicz D, Ferrara N, Schweigerer L and Neufeld G: Structural characterization and biological functions of fibroblast growth factor. Endocr Rev. 8:95–114. 1987. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Koga M, Kasayama S, Matsumoto K, Arita N, Hayakawa T and Sato B: Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J Clin Endocrinol Metab. 75:1436–1441. 1992.PubMed/NCBI | |
Zimering MB, Katsumata N, Sato Y, Brandi ML, Aurbach GD, Marx SJ and Friesen HG: Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: Relation to pituitary tumor. J Clin Endocrinol Metab. 76:1182–1187. 1993.PubMed/NCBI | |
Ozkaya HM, Comunoglu N, Keskin FE, Oz B, Haliloglu OA, Tanriover N, Gazioglu N and Kadioglu P: Locally produced estrogen through aromatization might enhance tissue expression of pituitary tumor transforming gene and fibroblast growth factor 2 in growth hormone-secreting adenomas. Endocrine. 52:632–640. 2016. View Article : Google Scholar | |
Moscatelli D: High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol. 131:123–130. 1987. View Article : Google Scholar : PubMed/NCBI | |
Givol D and Yayon A: Complexity of FGF receptors: Genetic basis for structural diversity and functional specificity. FASEB J. 6:3362–3369. 1992.PubMed/NCBI | |
Qian ZR, Sano T, Asa SL, Yamada S, Horiguchi H, Tashiro T, Li CC, Hirokawa M, Kovacs K and Ezzat S: Cytoplasmic expression of fibroblast growth factor receptor-4 in human pituitary adenomas: Relation to tumor type, size, proliferation, and invasiveness. J Clin Endocrinol Metab. 89:1904–1911. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jaakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhönen S, Lehtovirta P and Nevanlinna H: Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer. 54:378–382. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ohta T, Yamamoto M, Numata M, Iseki S, Tsukioka Y, Miyashita T, Kayahara M, Nagakawa T, Miyazaki I, Nishikawa K, et al: Expression of basic fibroblast growth factor and its receptor in human pancreatic carcinomas. Br J Cancer. 72:824–831. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ahmed NU, Ueda M, Ito A, Ohashi A, Funasaka Y and Ichihashi M: Expression of fibroblast growth factor receptors in naevus-cell naevus and malignant melanoma. Melanoma Res. 7:299–305. 1997. View Article : Google Scholar : PubMed/NCBI | |
Giri D, Ropiquet F and Ittmann M: Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 5:1063–1071. 1999.PubMed/NCBI | |
Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Öberg Å, Van Guelpen B, Rutegård J, Stenling R and Palmqvist R: Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol. 178:1387–1394. 2011. View Article : Google Scholar : PubMed/NCBI | |
McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S, Mitchell R, Olliff J, Sheppard MC, Franklyn JA, et al: Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: Relationships to clinical tumour behaviour. Clin Endocrinol (Oxf). 58:141–150. 2003. View Article : Google Scholar | |
Fukui S, Otani N, Nawashiro H, Yano A, Nomura N, Miyazawa T, Ohnuki A, Tsuzuki N, Katoh H, Ishihara S, et al: Subcellular localization of basic fibroblast growth factor and fibroblast growth factor receptor 1 in pituitary adenomas. Brain Tumor Pathol. 19:23–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Asa SL and Ezzat S: Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res. 14:1984–1996. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A and Ezzat S: The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet. 7:e10024002011. View Article : Google Scholar : PubMed/NCBI | |
da Costa Andrade VC, Parise O Jr, Hors CP, de Melo Martins PC, Silva AP and Garicochea B: The fibroblast growth factor receptor 4 (FGFR4) Arg388 allele correlates with survival in head and neck squamous cell carcinoma. Exp Mol Pathol. 82:53–57. 2007. View Article : Google Scholar | |
Frullanti E, Berking C, Harbeck N, Jézéquel P, Haugen A, Mawrin C, Parise O Jr, Sasaki H, Tsuchiya N and Dragani TA: Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 20:340–347. 2011. View Article : Google Scholar : PubMed/NCBI | |
Serra S, Zheng L, Hassan M, Phan AT, Woodhouse LJ, Yao JC, Ezzat S and Asa SL: The FGFR4-G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res. 72:5683–5691. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marmé F, Werft W, Benner A, Burwinkel B, Sinn P, Sohn C, Lichter P, Hahn M and Schneeweiss A: FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann Oncol. 21:1636–1642. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abbass SA, Asa SL and Ezzat S: Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab. 82:1160–1166. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ezzat S, Zheng L, Zhu XF, Wu GE and Asa SL: Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest. 109:69–78. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ezzat S, Yu S and Asa SL: Ikaros isoforms in human pituitary tumors: Distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol. 163:1177–1184. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ezzat S, Zheng L, Winer D and Asa SL: Targeting N-cadherin through fibroblast growth factor receptor-4: Distinct pathogenetic and therapeutic implications. Mol Endocrinol. 20:2965–2975. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fisher DA and Lakshmanan J: Metabolism and effects of epidermal growth factor and related growth factors in mammals (Review). Endocr Rev. 11:418–442. 1990. View Article : Google Scholar : PubMed/NCBI | |
Murdoch GH, Potter E, Nicolaisen AK, Evans RM and Rosenfeld MG: Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature. 300:192–194. 1982. View Article : Google Scholar : PubMed/NCBI | |
Qian X, LeVea CM, Freeman JK, Dougall WC and Greene MI: Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: A mechanism of interreceptor kinase activation and transphosphorylation. Proc Natl Acad Sci USA. 91:1500–1504. 1994. View Article : Google Scholar : PubMed/NCBI | |
Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J and Waterfield MD: Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 307:521–527. 1984. View Article : Google Scholar : PubMed/NCBI | |
Bethune G, Bethune D, Ridgway N and Xu Z: Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J Thorac Dis. 2:48–51. 2010.PubMed/NCBI | |
Nicholson S, Richard J, Sainsbury C, Halcrow P, Kelly P, Angus B, Wright C, Henry J, Farndon JR and Harris AL: Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer. 63:146–150. 1991. View Article : Google Scholar : PubMed/NCBI | |
Hudson LG, Zeineldin R, Silberberg M and Stack MS: Activated epidermal growth factor receptor in ovarian cancer. Cancer Treat Res. 149:203–226. 2009. View Article : Google Scholar : PubMed/NCBI | |
Takehana T, Kunitomo K, Suzuki S, Kono K, Fujii H, Matsumoto Y and Ooi A: Expression of epidermal growth factor receptor in gastric carcinomas. Clin Gastroenterol Hepatol. 1:438–445. 2003. View Article : Google Scholar | |
LeRiche VK, Asa SL and Ezzat S: Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab. 81:656–662. 1996.PubMed/NCBI | |
Chaidarun SS, Eggo MC, Sheppard MC and Stewart PM: Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology. 135:2012–2021. 1994. View Article : Google Scholar : PubMed/NCBI | |
Onguru O, Scheithauer BW, Kovacs K, Vidal S, Jin L, Zhang S, Ruebel KH and Lloyd RV: Analysis of epidermal growth factor receptor and activated epidermal growth factor receptor expression in pituitary adenomas and carcinomas. Mod Pathol. 17:772–780. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D and Melmed S: EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest. 121:4712–4721. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vallar L, Spada A and Giannattasio G: Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature. 330:566–568. 1987. View Article : Google Scholar : PubMed/NCBI | |
Theodoropoulou M, Arzberger T, Gruebler Y, Jaffrain-Rea ML, Schlegel J, Schaaf L, Petrangeli E, Losa M, Stalla GK and Pagotto U: Expression of epidermal growth factor receptor in neoplastic pituitary cells: Evidence for a role in corticotropinoma cells. J Endocrinol. 183:385–394. 2004. View Article : Google Scholar : PubMed/NCBI | |
Theodoropoulou M, Reincke M, Fassnacht M and Komada M: Decoding the genetic basis of Cushing's disease: USP8 in the spotlight. Eur J Endocrinol. 173:M73–M83. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu R and Melmed S: Pathogenesis of pituitary tumors. Prog Brain Res. 182:207–227. 2010. View Article : Google Scholar : PubMed/NCBI | |
Onofri C, Theodoropoulou M, Losa M, Uhl E, Lange M, Arzt E, Stalla GK and Renner U: Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: Detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol. 191:249–261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL and Wass JA: Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab. 85:1159–1162. 2000. View Article : Google Scholar : PubMed/NCBI |