1
|
Nieman LK: Update in the medical therapy
of Cushing's disease. Curr Opin Endocrinol Diabetes Obes.
20:330–334. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Prague JK, May S and Whitelaw BC:
Cushing's syndrome. BMJ. 346:f9452013. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Gadelha MR and Vieira Neto L: Efficacy of
medical treatment in Cushing's disease: A systematic review. Clin
Endocrinol (Oxf). 80:1–12. 2014. View Article : Google Scholar
|
4
|
Tritos NA, Biller BM and Swearingen B:
Management of Cushing disease. Nat Rev Endocrinol. 7:279–289. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Wagenmakers MA, Netea-Maier RT, van
Lindert EJ, Timmers HJ, Grotenhuis JA and Hermus AR: Repeated
transsphenoidal pituitary surgery (TS) via the endoscopic
technique: A good therapeutic option for recurrent or persistent
Cushing's disease (CD). Clin Endocrinol (Oxf). 70:274–280. 2009.
View Article : Google Scholar
|
6
|
Saini S, Majid S and Dahiya R: The complex
roles of Wnt antagonists in RCC. Nat Rev Urol. 8:690–699. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Suzuki H, Watkins DN, Jair KW, Schuebel
KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van
Engeland M, et al: Epigenetic inactivation of SFRP genes allows
constitutive WNT signaling in colorectal cancer. Nat Genet.
36:417–422. 2004. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Saito T, Mitomi H, Imamhasan A, Hayashi T,
Mitani K, Takahashi M, Kajiyama Y and Yao T: Downregulation of
sFRP-2 by epigenetic silencing activates the β-catenin/Wnt
signaling pathway in esophageal basaloid squamous cell carcinoma.
Virchows Arch. 464:135–143. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kongkham PN, Northcott PA, Croul SE, Smith
CA, Taylor MD and Rutka JT: The SFRP family of WNT inhibitors
function as novel tumor suppressor genes epigenetically silenced in
medulloblastoma. Oncogene. 29:3017–3024. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takagi H, Sasaki S, Suzuki H, Toyota M,
Maruyama R, Nojima M, Yamamoto H, Omata M, Tokino T, Imai K, et al:
Frequent epigenetic inactivation of SFRP genes in hepatocellular
carcinoma. J Gastroenterol. 43:378–389. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wu Y, Bai J, Hong L, Liu C, Yu S, Yu G and
Zhang Y: Low expression of secreted frizzled-related protein 2 and
nuclear accumulation of β-catenin in aggressive nonfunctioning
pituitary adenoma. Oncol Lett. 12:199–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
14
|
Jian FF, Li YF, Chen YF, Jiang H, Chen X,
Zheng LL, Zhao Y, Wang WQ, Ning G, Bian LG, et al: Inhibition of
ubiquitin-specific peptidase 8 suppresses adrenocorticotropic
hormone production and tumorous corticotroph cell growth in AtT20
cells. Chin Med J (Engl). 129:2102–2108. 2016. View Article : Google Scholar
|
15
|
Gu X, Li B, Jiang M, Fang M, Ji J, Wang A,
Wang M, Jiang X and Gao C: RNA sequencing reveals differentially
expressed genes as potential diagnostic and prognostic indicators
of gallbladder carcinoma. Oncotarget. 6:20661–20671. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Pflueger D, Terry S, Sboner A, Habegger L,
Esgueva R, Lin PC, Svensson MA, Kitabayashi N, Moss BJ, MacDonald
TY, et al: Discovery of non-ETS gene fusions in human prostate
cancer using next-generation RNA sequencing. Genome Res. 21:56–67.
2011. View Article : Google Scholar :
|
17
|
Ho DW, Yang ZF, Yi K, Lam CT, Ng MN, Yu
WC, Lau J, Wan T, Wang X, Yan Z, et al: Gene expression profiling
of liver cancer stem cells by RNA-sequencing. PLoS One.
7:e371592012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Marsit CJ, Karagas MR, Andrew A, Liu M,
Danaee H, Schned AR, Nelson HH and Kelsey KT: Epigenetic
inactivation of SFRP genes and TP53 alteration act jointly as
markers of invasive bladder cancer. Cancer Res. 65:7081–7085. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Chung MT, Lai HC, Sytwu HK, Yan MD, Shih
YL, Chang CC, Yu MH, Liu HS, Chu DW and Lin YW: SFRP1 and SFRP2
suppress the transformation and invasion abilities of cervical
cancer cells through Wnt signal pathway. Gynecol Oncol.
112:646–653. 2009. View Article : Google Scholar
|
20
|
Zhang Y and Chen H: Genistein attenuates
WNT signaling by up-regulating sFRP2 in a human colon cancer cell
line. Exp Biol Med (Maywood). 236:714–722. 2011. View Article : Google Scholar
|
21
|
Sano M, Driscoll DR, De Jesus-Monge WE,
Klimstra DS and Lewis BC: Activated wnt signaling in stroma
contributes to development of pancreatic mucinous cystic neoplasms.
Gastroenterology. 146:257–267. 2014. View Article : Google Scholar :
|
22
|
Zhang Y IV, Morris JP IV, Yan W, Schofield
HK, Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M and Pasca di
Magliano M: Canonical wnt signaling is required for pancreatic
carcinogenesis. Cancer Res. 73:4909–4922. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chambers TJ, Giles A, Brabant G and Davis
JR: Wnt signalling in pituitary development and tumorigenesis.
Endocr Relat Cancer. 20:R101–R111. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Q, Shen K, Zhao Y, He X, Ma C, Wang L,
Wang B, Liu J and Ma J: MicroRNA-222 promotes tumorigenesis via
targeting DKK2 and activating the Wnt/β-catenin signaling pathway.
FEBS Lett. 587:1742–1748. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nojima M, Suzuki H, Toyota M, Watanabe Y,
Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K,
et al: Frequent epigenetic inactivation of SFRP genes and
constitutive activation of Wnt signaling in gastric cancer.
Oncogene. 26:4699–4713. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Elston MS, Gill AJ, Conaglen JV, Clarkson
A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson
BG, et al: Wnt pathway inhibitors are strongly down-regulated in
pituitary tumors. Endocrinology. 149:1235–1242. 2008. View Article : Google Scholar
|
27
|
Liu N-A, Araki T, Cuevas-Ramos D, Hong J,
Ben-Shlomo A, Tone Y, Tone M and Melmed S: Cyclin E-mediated human
proopiomelanocortin regulation as a therapeutic target for cushing
disease. J Clin Endocrinol Metab. 100:2557–2564. 2015. View Article : Google Scholar : PubMed/NCBI
|