Glutathione‑degrading enzymes in the complex landscape of tumors (Review)
- This article is part of the special Issue: Going to the discovery of new biomarkers in cancer
- Authors:
- Tianyi Zhang
- Chongjie Yao
- Xu Zhou
- Shimin Liu
- Li Qi
- Shiguo Zhu
- Chen Zhao
- Dan Hu
- Weidong Shen
-
Affiliations: Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, School of Acupuncture‑moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: June 3, 2024 https://doi.org/10.3892/ijo.2024.5660
- Article Number: 72
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lushchak VI: Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012:7368372012. View Article : Google Scholar : PubMed/NCBI | |
Lu SC: Regulation of glutathione synthesis. Mol Aspects Med. 30:42–59. 2009. View Article : Google Scholar : | |
Kennedy L, Sandhu JK, Harper ME and Cuperlovic-Culf M: Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 10:14292020. View Article : Google Scholar : PubMed/NCBI | |
Bansal A and Simon MC: Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 217:2291–2298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Checa J, Hirano T, Tsukamoto H and Kaplowitz N: Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol. 10:469–475. 1993. View Article : Google Scholar : PubMed/NCBI | |
Guarino MP, Afonso RA, Raimundo N, Raposo JF and Macedo MP: Hepatic glutathione and nitric oxide are critical for hepatic insulin-sensitizing substance action. Am J Physiol Gastrointest Liver Physiol. 284:G588–G594. 2003. View Article : Google Scholar | |
Mandal PK, Roy RG and Samkaria A: Oxidative stress: Glutathione and its potential to protect methionine-35 of abeta peptide from oxidation. ACS Omega. 7:27052–27061. 2022. View Article : Google Scholar : PubMed/NCBI | |
Charisis S, Ntanasi E, Stamelou M, Xiromerisiou G, Maraki M, Veskoukis AS, Yannakoulia M, Kosmidis MH, Anastasiou CA, Giagkou N, et al: Plasma glutathione and prodromal parkinson's disease probability. Mov Disord. 37:200–205. 2022. View Article : Google Scholar | |
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X and Wu C: Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials. 277:1211102021. View Article : Google Scholar : PubMed/NCBI | |
Bachhawat AK and Yadav S: The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life. 70:585–592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bachhawat AK and Kaur A: Glutathione degradation. Antioxid Redox Signal. 27:1200–1216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mungrue I, Pagnon J, Kohannim O, Gargalovic P and Lusis A: CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. J Immunol. 182:466–476. 2009. View Article : Google Scholar | |
Kumar A, Tikoo S, Maity S, Sengupta S, Sengupta S, Kaur A and Bachhawat AK: Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep. 13:1095–1101. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ma S, Zhang J, Lou L, Liu W, Gao C, Miao L, Sun F, Chen W, Cao X and Wei J: MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci Rep. 13:59352023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li W, Ma Y, Zhao X, He L, Sun P and Wang H: High-fat diet aggravates colitis-associated carcinogenesis by evading ferroptosis in the ER stress-mediated pathway. Free Radic Biol Med. 177:156–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alborzinia H, Flórez AF, Kreth S, Brückner LM, Yildiz U, Gartlgruber M, Odoni DI, Poschet G, Garbowicz K, Shao C, et al: MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Cancer. 3:471–485. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stepulak A, Rola R, Polberg K and Ikonomidou C: Glutamate and its receptors in cancer. J Neural Transm (Vienna). 121:933–944. 2014. View Article : Google Scholar : PubMed/NCBI | |
Locasale JW: Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer. 13:572–583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cole SP and Deeley RG: Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci. 27:438–446. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nguyen YTK, Park JS, Jang JY, Kim KR, Vo TTL, Kim KW and Han BW: Structural and functional analyses of human ChaC2 in glutathione metabolism. Biomolecules. 10:312019. View Article : Google Scholar : PubMed/NCBI | |
Orlowski M and Meister A: The gamma-glutamyl cycle: A possible transport system for amino acids. Proc Natl Acad Sci USA. 67:1248–1255. 1970. View Article : Google Scholar : PubMed/NCBI | |
Hanigan MH: Gamma-glutamyl transpeptidase: Redox regulation and drug resistance. Adv Cancer Res. 122:103–141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Verma VV, Gupta R and Goel M: Phylogenetic and evolutionary analysis of functional divergence among gamma glutamyl transpeptidase (GGT) subfamilies. Biol Direct. 10:492015. View Article : Google Scholar | |
Mistry D and Stockley RA: Gamma-glutamyl transferase: The silent partner? COPD. 7:285–290. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hanigan MH and Frierson HF Jr: Immunohistochemical detection of gamma-glutamyl transpeptidase in normal human tissue. J Histochem Cytochem. 44:1101–1108. 1996. View Article : Google Scholar : PubMed/NCBI | |
Figlewicz DA, Delattre O, Guellaen G, Krizus A, Thomas G, Zucman J and Rouleau GA: Mapping of human gamma-glutamyl transpeptidase genes on chromosome 22 and other human autosomes. Genomics. 17:299–305. 1993. View Article : Google Scholar : PubMed/NCBI | |
Morris C, Courtay C, van Kessel AG, ten Hoeve J, Heisterkamp N and Groffen J: Localization of a gamma-glutamyl-transferase-related gene family on chromosome 22. Hum Genet. 91:31–36. 1993. View Article : Google Scholar : PubMed/NCBI | |
Heisterkamp N, Groffen J, Warburton D and Sneddon TP: The human gamma-glutamyltransferase gene family. Hum Genet. 123:321–232. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wickham S, West MB, Cook PF and Hanigan MH: Gamma-glutamyl compounds: Substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem. 414:208–214. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mottaghitalab F, Lanjanian H and Masoudi-Nejad A: Revealing transcriptional and post-transcriptional regulatory mechanisms of γ-glutamyl transferase and keratin isoforms as novel cooperative biomarkers in low-grade glioma and glioblastoma multiforme. Genomics. 113:2623–2633. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang L, Chan FKL, Ji J, Yu J and Liang JQ: Gamma-glutamyltransferase 7 suppresses gastric cancer by cooperating with RAB7 to induce mitophagy. Oncogene. 41:3485–3497. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Li J, Guo Y, Dong W and Zheng X: Expression status and prognostic significance of gamma-glutamyl transpeptidase family genes in hepatocellular carcinoma. Front Oncol. 11:7311442021. View Article : Google Scholar : PubMed/NCBI | |
Samgina TA and Lazarenko VA: The role of polymorphic variants rs11546155 and rs6119534 of the GGT7 gene and risk factors in the development of acute pancreatitis. Vopr Pitan. 91:43–50. 2022.In Russian. | |
West MB, Wickham S, Parks EE, Sherry DM and Hanigan MH: Human GGT2 does not autocleave into a functional enzyme: A cautionary tale for interpretation of microarray data on redox signaling. Antioxid Redox Signal. 19:1877–1888. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moon DO, Kim BY, Jang JH, Kim MO, Jayasooriya RG, Kang CH, Choi YH, Moon SK, Kim WJ, Ahn JS and Kim GY: K-RAS transformation in prostate epithelial cell overcomes H2O2-induced apoptosis via upregulation of gamma-glutamyltransferase-2. Toxicol In Vitro. 26:429–434. 2012. View Article : Google Scholar : PubMed/NCBI | |
Courtay C, Heisterkamp N, Siest G and Groffen J: Expression of multiple gamma-glutamyltransferase genes in man. Biochem J. 297:503–508. 1994. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi N and Ikeda Y: Gamma-glutamyl transpeptidase: Catalytic mechanism and gene expression. Adv Enzymol Relat Areas Mol Biol. 72:239–278. 1998.PubMed/NCBI | |
Zhang H and Forman HJ: Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol. 41:509–515. 2009. View Article : Google Scholar : PubMed/NCBI | |
Daubeuf S, Duvoix A, Wellman-Rousseau M, Diederich M and Visvikis A: Phorbol ester regulation of the human gamma-glutamyltransferase gene promoter. Biochem Biophys Res Commun. 313:300–307. 2004. View Article : Google Scholar | |
Pawlak A, Lahuna O, Bulle F, Suzuki A, Ferry N, Siegrist S, Chikhi N, Chobert MN, Guellaen G and Laperche Y: Gamma-glutamyl transpeptidase: A single copy gene in the rat and a multigene family in the human genome. J Biol Chem. 263:9913–9916. 1988. View Article : Google Scholar : PubMed/NCBI | |
Pandur S, Pankiv S, Johannessen M, Moens U and Huseby NE: Gamma-glutamyltransferase is upregulated after oxidative stress through the Ras signal transduction pathway in rat colon carcinoma cells. Free Radic Res. 41:1376–1384. 2007. View Article : Google Scholar : PubMed/NCBI | |
Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu H, Iles KE, Liu RM, Postlethwait EM, Laperche Y and Forman HJ: 4-Hydroxynonenal induces rat gamma-glutamyl transpeptidase through mitogen-activated protein kinase-mediated electrophile response element/nuclear factor erythroid 2-related factor 2 signaling. Am J Respir Cell Mol Biol. 34:174–181. 2006. View Article : Google Scholar | |
Mussbacher M, Derler M, Basilio J and Schmid JA: NF-κB in monocytes and macrophages-an inflammatory master regulator in multitalented immune cells. Front Immunol. 14:11346612023. View Article : Google Scholar | |
Yao C, Ren J, Huang R, Tang C, Cheng Y, Lv Z, Kong L, Fang S, Tao J, Fu Y, et al: Transcriptome profiling of microRNAs reveals potential mechanisms of manual therapy alleviating neuropathic pain through microRNA-547-3p-mediated Map4k4/NF-κb signaling pathway. J Neuroinflammation. 19:2112022. View Article : Google Scholar | |
Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, Eifes S, Dicato M, Aggarwal BB, Visvikis A and Diederich M: Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol. 77:397–411. 2009. View Article : Google Scholar | |
Kaur A, Gautam R, Srivastava R, Chandel A, Kumar A, Karthikeyan S and Bachhawat AK: ChaC2, an enzyme for slow turnover of cytosolic glutathione. J Biol Chem. 292:638–651. 2017. View Article : Google Scholar : | |
Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS and Mungrue IN: Human CHAC1 protein degrades glutathione, and mRNA induction is regulated by the transcription factors ATF4 and ATF3 and a bipartite ATF/CRE regulatory element. J Biol Chem. 290:15878–15891. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Jiang M and Zheng M: Biological characteristics and functions of ChaC1-catalyzed clutathione degradation in the cytoplasm. Chin J Biochem Mol Biol. 38:284–289. 2022. | |
Chand S, Mehta V, Sharma RK, Anvikar AR and Chander H: Cancer informatics analysis indicates high CHAC2 associated with unfavorable prognosis in breast cancer. Front Oncol. 12:10589312022. View Article : Google Scholar : PubMed/NCBI | |
Tsunoda S, Avezov E, Zyryanova A, Konno T, Mendes-Silva L, Pinho Melo E, Harding HP and Ron D: Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. Elife. 3:e034212014. View Article : Google Scholar : PubMed/NCBI | |
Suyal S, Choudhury C and Bachhawat AK: The ChaC1 active site: Defining the residues and determining the role of ChaC1-exclusive residues in the structural and functional stability. Proteins. 91:567–580. 2023. View Article : Google Scholar | |
Oh-Hashi K, Nomura Y, Shimada K, Koga H, Hirata Y and Kiuchi K: Transcriptional and post-translational regulation of mouse cation transport regulator homolog 1. Mol Cell Biochem. 380:97–106. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen MS, Wang SF, Hsu CY, Yin PH, Yeh TS, Lee HC and Tseng LM: CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget. 8:114588–114602. 2017. View Article : Google Scholar | |
Grimm C, Hofstetter G, Aust S, Mutz-Dehbalaie I, Bruch M, Heinze G, Rahhal-Schupp J, Reinthaller A, Concin N and Polterauer S: Association of gamma-glutamyltransferase with severity of disease at diagnosis and prognosis of ovarian cancer. Br J Cancer. 109:610–614. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hofbauer SL, Stangl KI, de Martino M, Lucca I, Haitel A, Shariat SF and Klatte T: Pretherapeutic gamma-glutamyltransferase is an independent prognostic factor for patients with renal cell carcinoma. Br J Cancer. 111:1526–1531. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wei JR, Dong J and Li L: Cancer-associated fibroblasts-derived gamma-glutamyltransferase 5 promotes tumor growth and drug resistance in lung adenocarcinoma. Aging (Albany NY). 12:13220–13233. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Zhou H, Zou J and Wang D: GGT5 is an independent prognostic biomarker in stomach adenocarcinoma. Can J Gastroenterol Hepatol. 2022:99833512022. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Yang H, Lu J, Li D, Xu C and Risch HA: Serum gamma-glutamyltransferase and the overall survival of metastatic pancreatic cancer. BMC Cancer. 19:10202019. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Shu X, Dong Y, Zhou J, Teng R, Shen J, Chen Y, Dong M, Zhang W, Huang Y, et al: Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget. 8:361712017. View Article : Google Scholar : PubMed/NCBI | |
Durham JR, Frierson HF and Hanigan MH: Gamma-glutamyl transpeptidase immunoreactivity in benign and malignant breast tissue. Breast Cancer Res Treat. 45:55–62. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wang X, Wang N, Ma L, Xie X, Zhang H, Kang H and Zhou Z: Identification of novel antioxidant gene signature to predict the prognosis of patients with gastric cancer. World J Surg Oncol. 19:2192021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li C, Zhang Y, Zhang J and Yang X: Ophiopogonin B induces gastric cancer cell death by blocking the GPX4/xCT-dependent ferroptosis pathway. Oncol Lett. 23:1042022. View Article : Google Scholar : PubMed/NCBI | |
Gagliardi M, Cotella D, Santoro C, Cora D, Barlev NA, Piacentini M and Corazzari M: Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis. 10:9022019. View Article : Google Scholar : PubMed/NCBI | |
He S, Zhang M, Ye Y, Zhuang J, Ma X, Song Y and Xia W: ChaC glutathione specific γ-glutamylcyclotransferase 1 inhibits cell viability and increases the sensitivity of prostate cancer cells to docetaxel by inducing endoplasmic reticulum stress and ferroptosis. Exp Ther Med. 22:9972021. View Article : Google Scholar | |
Wang Z, Li M, Liu Y, Qiao Z, Bai T, Yang L and Liu B: Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response-induced upregulation of CHAC1 expression. Oncol Rep. 46:2402021. View Article : Google Scholar : | |
Wang N, Zeng GZ, Yin JL and Bian ZX: Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt's Lymphoma. Biochem Biophys Res Commun. 519:533–539. 2019. View Article : Google Scholar : PubMed/NCBI | |
Joo NE, Ritchie K, Kamarajan P, Miao D and Kapila YL: Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 1:295–305. 2012. View Article : Google Scholar | |
Chen PH, Shen WL, Shih CM, Ho KH, Cheng CH, Lin CW, Lee CC, Liu AJ and Chen KC: The CHAC1-inhibited Notch3 pathway is involved in temozolomide-induced glioma cytotoxicity. Neuropharmacology. 116:300–314. 2017. View Article : Google Scholar | |
Li D, Liu S, Xu J, Chen L, Xu C, Chen F, Xu Z, Zhang Y, Xia S, Shao Y and Wang Y: Ferroptosis-related gene CHAC1 is a valid indicator for the poor prognosis of kidney renal clear cell carcinoma. J Cell Mol Med. 25:3610–3621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tseng HH, Chen YZ, Chou NH, Chen YC, Wu CC, Liu LF, Yang YF, Yeh CY, Kung ML, Tu YT and Tsai KW: Metformin inhibits gastric cancer cell proliferation by regulation of a novel Loc100506691-CHAC1 axis. Mol Ther Oncolytics. 22:180–194. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiao R, Wang S, Guo J, Liu S, Ding A, Wang G, Li W, Zhang Y, Bian X, Zhao S and Qiu W: Ferroptosis-related gene NOX4, CHAC1 and HIF1A are valid biomarkers for stomach adenocarcinoma. J Cell Mol Med. 26:1183–1193. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Yu M and Zhang T: Construction of oxidative stress-related genes risk model predicts the prognosis of uterine corpus endometrial cancer patients. Cancers (Basel). 14:55722022. View Article : Google Scholar : PubMed/NCBI | |
Mehta V, Suman P and Chander H: High levels of unfolded protein response component CHAC1 associates with cancer progression signatures in malignant breast cancer tissues. Clin Transl Oncol. 24:2351–2365. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li M, Shi D and Zhu Y: Higher expression of cation transport regulator-like protein 1 (CHAC1) predicts of poor outcomes in uveal melanoma (UM) patients. Int Ophthalmol. 39:2825–2832. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Liu Y, Yu Y, Zhao Y and Yu A: Comprehensive analysis of ferroptosis-related genes and prognosis of cutaneous melanoma. BMC Med Genomics. 15:392022. View Article : Google Scholar : PubMed/NCBI | |
Goebel G, Berger R, Strasak AM, Egle D, Müller-Holzner E, Schmidt S, Rainer J, Presul E, Parson W, Lang S, et al: Elevated mRNA expression of CHAC1 splicing variants is associated with poor outcome for breast and ovarian cancer patients. Br J Cancer. 106:189–198. 2012. View Article : Google Scholar : | |
Wang CK, Yang SC, Hsu SC, Chang FP, Lin YT, Chen SF, Cheng CL, Hsiao M, Lu FL and Lu J: CHAC2 is essential for self-renewal and glutathione maintenance in human embryonic stem cells. Free Radic Biol Med. 113:439–451. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Fei W, Shi Q, Li Q, Kuang Y, Wang C, He C and Hu X: CHAC2, downregulated in gastric and colorectal cancers, acted as a tumor suppressor inducing apoptosis and autophagy through unfolded protein response. Cell Death Dis. 8:e30092017. View Article : Google Scholar : PubMed/NCBI | |
Tchantchou F, Graves M, Ashline D, Morin A, Pimenta A, Ortiz D, Rogers E and Shea TB: Increased transcription and activity of glutathione synthase in response to deficiencies in folate, vitamin E, and apolipoprotein E. J Neurosci Res. 75:508–515. 2004. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Wen L, Jiang R, Deng J and Chen M: CHAC2 promotes lung adenocarcinoma by regulating ROS-mediated MAPK pathway activation. J Cancer. 14:1309–1320. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Lu J and Qiao Y: A metabolism-associated gene signature for prognosis prediction of hepatocellular carcinoma. Front Mol Biosci. 9:9883232022. View Article : Google Scholar : PubMed/NCBI | |
Lisek K, Campaner E, Ciani Y, Walerych D and Del Sal G: Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget. 9:20508–20523. 2018. View Article : Google Scholar : PubMed/NCBI | |
Joyce-Brady M, Jean JC and Hughey RP: Gamma-glutamyltransferase and its isoform mediate an endoplasmic reticulum stress response. J Biol Chem. 276:9468–9477. 2001. View Article : Google Scholar | |
Hayashima K and Katoh H: Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation-induced ferroptosis. J Biol Chem. 298:1017032022. View Article : Google Scholar : PubMed/NCBI | |
Ramsay EE and Dilda PJ: Glutathione S-conjugates as prodrugs to target drug-resistant tumors. Front Pharmacol. 5:1812014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Hyde AS, Simpson MA and Barycki JJ: Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res. 122:69–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, Ou CN, Chévez-Barrios P, Wang Y, Habib GM, Goodman JC, et al: Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA. 93:7923–7926. 1996. View Article : Google Scholar : PubMed/NCBI | |
Barrios R, Shi ZZ, Kala SV, Wiseman AL, Welty SE, Kala G, Bahler AA, Ou CN and Lieberman MW: Oxygen-induced pulmonary injury in gamma-glutamyl transpeptidase-deficient mice. Lung. 179:319–330. 2001. View Article : Google Scholar | |
Rojas E, Valverde M, Kala SV, Kala G and Lieberman MW: Accumulation of DNA damage in the organs of mice deficient in gamma-glutamyltranspeptidase. Mutat Res. 447:305–316. 2000. View Article : Google Scholar | |
Darin N, Leckström K, Sikora P, Lindgren J, Almén G and Asin-Cayuela J: γ-glutamyl transpeptidase deficiency caused by a large homozygous intragenic deletion in GGT1. Eur J Hum Genet. 26:808–817. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alessandro C, Maria F, Aldo P and Alfonso P: Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting. Anticancer Res. 30:1169–1181. 2010. | |
Giommarelli C, Corti A, Supino R, Favini E, Paolicchi A, Pompella A and Zunino F: Cellular response to oxidative stress and ascorbic acid in melanoma cells overexpressing gamma-glutamyltransferase. Eur J Cancer. 44:750–759. 2008. View Article : Google Scholar : PubMed/NCBI | |
Panis C, Victorino VJ, Herrera AC, Freitas LF, De Rossi T, Campos FC, Simão AN, Barbosa DS, Pinge-Filho P, Cecchini R and Cecchini AL: Differential oxidative status and immune characterization of the early and advanced stages of human breast cancer. Breast Cancer Res Treat. 133:881–888. 2012. View Article : Google Scholar | |
Chen X and Cubillos-Ruiz JR: Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar : | |
Shi Y, Jiang B and Zhao J: Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother. 170:1159842024. View Article : Google Scholar | |
Chen H, Xu N, Xu J, Zhang C, Li X, Xu H, Zhu W, Li J, Liang D and Zhou W: A risk signature based on endoplasmic reticulum stress-associated genes predicts prognosis and immunity in pancreatic cancer. Front Mol Biosci. 10:12980772023. View Article : Google Scholar : PubMed/NCBI | |
Joyce-Brady M, Jean JC and Hughey RP: Gamma-glutamyltransferase and its isoform mediate an endoplasmic reticulum stress response. J Biol Chem. 276:9468–9477. 2001. View Article : Google Scholar | |
Cui Y, Zhou X, Chen L, Tang Z, Mo F, Li XC, Mao H, Wei X, Wang C and Wang H: Crosstalk between endoplasmic reticulum stress and oxidative stress in heat exposure-induced apoptosis is dependent on the ATF4-CHOP-CHAC1 signal pathway in IPEC-J2 cells. J Agric Food Chem. 69:15495–15511. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tomonobu N, Komalasari NLGY, Sumardika IW, Jiang F, Chen Y, Yamamoto KI, Kinoshita R, Murata H, Inoue Y and Sakaguchi M: Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chem Biol Interact. 324:1090852020. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Zhen C, Liu J, Yang P, Hu L and Shang P: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev. 2019:31501452019. View Article : Google Scholar : PubMed/NCBI | |
Wen RJ, Dong X, Zhuang HW, Pang FX, Ding SC, Li N, Mai YX, Zhou ST, Wang JY and Zhang JF: Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine. 116:1548812023. View Article : Google Scholar : PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pfeffer CM and Singh ATK: Apoptosis: A target for anticancer therapy. Int J Mol Sci. 19:4482018. View Article : Google Scholar : PubMed/NCBI | |
Brancaccio M, Russo M, Masullo M, Palumbo A, Russo GL and Castellano I: Sulfur-containing histidine compounds inhibit γ-glutamyl transpeptidase activity in human cancer cells. J Biol Chem. 294:14603–14614. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bui TT, Nitta RT, Kahn SA, Razavi SM, Agarwal M, Aujla P, Gholamin S, Recht L and Li G: γ-Glutamyl transferase 7 is a novel regulator of glioblastoma growth. BMC Cancer. 15:2252015. View Article : Google Scholar | |
Hirschhorn T and Stockwell BR: The development of the concept of ferroptosis. Free Radic Biol Med. 133:130–143. 2019. View Article : Google Scholar : | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wen T, Marzio A, Song D, Chen S, Yang C, Zhao F, Zhang B, Zhao G, Ferri A, et al: FBXO32-mediated degradation of PTEN promotes lung adenocarcinoma progression. Cell Death Dis. 15:2822024. View Article : Google Scholar : PubMed/NCBI | |
Zhan CH, Ding DS, Zhang W, Wang HL, Mao ZY and Liu GJ: The cancer-testis antigen a-kinase anchor protein 3 facilitates breast cancer progression via activation of the PTEN/PI3K/AKT/mTOR signaling. Bioengineered. 13:8478–8489. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Accaoui MJ, Enoiu M, Mergny M, Masson C, Dominici S, Wellman M and Visvikis A: Gamma-glutamyltranspeptidase-dependent glutathione catabolism results in activation of NF-kB. Biochem Biophys Res Commun. 276:1062–1067. 2000. View Article : Google Scholar : PubMed/NCBI | |
Djavaheri-Mergny M, Accaoui MJ, Rouillard D and Wietzerbin J: Gamma-glutamyl transpeptidase activity mediates NF-kappaB activation through lipid peroxidation in human leukemia U937 cells. Mol Cell Biochem. 232:103–111. 2002. View Article : Google Scholar : PubMed/NCBI | |
Franzini M, Corti A, Lorenzini E, Paolicchi A, Pompella A, De Cesare M, Perego P, Gatti L, Leone R, Apostoli P and Zunino F: Modulation of cell growth and cisplatin sensitivity by membrane gamma-glutamyltransferase in melanoma cells. Eur J Cancer. 42:2623–2630. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yu X and Long YC: Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis. Sci Rep. 6:300332016. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, George D, McDonnell DP, Hsu DS, Chang JT and Chi JT: Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene. 36:4235–4242. 2017. View Article : Google Scholar | |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Kepp O, Chan FKM and Kroemer G: Necroptosis: Mechanisms and relevance to disease. Annu Rev Pathol. 12:103–130. 2017. View Article : Google Scholar | |
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H and Ding J: Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 13:6372022. View Article : Google Scholar : PubMed/NCBI | |
Yang Z and Klionsky DJ: An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 335:1–32. 2009.PubMed/NCBI | |
Xu G, Wang J, Zhang Y, Chen Z and Deng R: GGT1 suppresses the development of ferroptosis and autophagy in mouse retinal ganglion cell through targeting GCLC. Eye Brain. 15:139–151. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sohrab SS, Raj R, Nagar A, Hawthorne S, Paiva-Santos AC, Kamal MA, El-Daly MM, Azhar EI and Sharma A: Chronic inflammation's transformation to cancer: A nanotherapeutic paradigm. Molecules. 28:44132023. View Article : Google Scholar : PubMed/NCBI | |
Ying HQ, Liao YC, Luo YR, Xiong G, Huang Y, Nie RW, Xiong CF and Cheng XX: Cancer-elicited inflammation attenuates response and outcome in tyrosine kinase inhibitor naive patients with advanced NSCLC. Pharmacol Res. 170:1057342021. View Article : Google Scholar : PubMed/NCBI | |
Carr B and Guerra V: Serum inflammation parameters and survival in hepatocellular carcinoma patients: Importance of albumin and gamma-glutamyltranspeptidase. Oncology. 101:313–320. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ozcelik F: Prognostic value of gamma-glutamyl transpeptidase in liver cirrhosis and hepatocellular cancer regardless of other parameters. Clin Res Hepatol Gastroenterol. 45:1017082021. View Article : Google Scholar : PubMed/NCBI | |
Singh J, Chander J, Singh S, Singh G and Atal CK: Gamma-glutamyl transpeptidase: A novel biochemical marker in inflammation. Biochem Pharmacol. 35:3753–3760. 1986. View Article : Google Scholar : PubMed/NCBI | |
Ricci V, Giannouli M, Romano M and Zarrilli R: Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J Gastroenterol. 20:630–638. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oertli M, Noben M, Engler DB, Semper RP, Reuter S, Maxeiner J, Gerhard M, Taube C and Müller A: Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci USA. 110:3047–3052. 2013. View Article : Google Scholar | |
Li N, Ouyang Y, Chen S, Peng C, He C, Hong J, Yang X, Zhu Y and Lu NH: Integrative analysis of differential lncRNA/mRNA expression profiling in Helicobacter pylori infection-associated gastric carcinogenesis. Front Microbiol. 11:8802020. View Article : Google Scholar : PubMed/NCBI | |
Wada Y, Takemura K, Tummala P, Uchida K, Kitagaki K, Furukawa A, Ishige Y, Ito T, Hara Y, Suzuki T, et al: Helicobacter pylori induces somatic mutations in TP53 via overexpression of CHAC1 in infected gastric epithelial cells. FEBS Open Bio. 8:671–679. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ogawa T, Wada Y, Takemura K, Board PG, Uchida K, Kitagaki K, Tamura T, Suzuki T, Tokairin Y, Nakajima Y and Eishi Y: CHAC1 overexpression in human gastric parietal cells with Helicobacter pylori infection in the secretory canaliculi. Helicobacter. 24:e125982019. View Article : Google Scholar : PubMed/NCBI | |
Perra L, Balloy V, Foussignière T, Moissenet D, Petat H, Mungrue IN, Touqui L, Corvol H, Chignard M and Guillot L: CHAC1 is differentially expressed in normal and cystic fibrosis bronchial epithelial cells and regulates the inflammatory response induced by Pseudomonas aeruginosa. Front Immunol. 9:28232018. View Article : Google Scholar : PubMed/NCBI | |
Rousset-Jablonski C, Dalon F, Reynaud Q, Lemonnier L, Dehillotte C, Jacoud F, Berard M, Viprey M, Van Ganse E, Durieu I and Belhassen M: Cancer incidence and prevalence in cystic fibrosis patients with and without a lung transplant in France. Front Public Health. 10:10436912022. View Article : Google Scholar : PubMed/NCBI | |
Daubeuf S, Leroy P, Paolicchi A, Pompella A, Wellman M, Galteau MM and Visvikis A: Enhanced resistance of HeLa cells to cisplatin by overexpression of gamma-glutamyltransferase. Biochem Pharmacol. 64:207–216. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Xu C, Gao X and Yao Q: Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics. 12:2115–2132. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Z, He S, He S and Wang Y: Fighting against drug-resistant tumors by the inhibition of γ-glutamyl transferase with supramolecular platinum prodrug nano-assemblies. J Mater Chem B. 9:4587–4595. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hanigan MH, Frierson HF Jr, Abeler VM, Kaern J and Taylor PT Jr: Human germ cell tumours: Expression of gamma-glutamyl transpeptidase and sensitivity to cisplatin. Br J Cancer. 81:75–79. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zaal EA, Berkers CR, Ruijtenbeek R, Garssen J and Redegeld FA: Omega-3 fatty acids DHA and EPA reduce bortezomib resistance in multiple myeloma cells by promoting glutathione degradation. Cells. 10:22872021. View Article : Google Scholar : PubMed/NCBI | |
Yu X, He Z, Wang Z, Ke S, Wang H, Wang Q and Li S: Brusatol hinders the progression of bladder cancer by Chac1/Nrf2/SLC7A11 pathway. Exp Cell Res. 438:1140532024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, He MJ, Chen XJ, Bai YT and Zhou G: Glaucocalyxin A impairs tumor growth via amplification of the ATF4/CHOP/CHAC1 cascade in human oral squamous cell carcinoma. J Ethnopharmacol. 290:1151002022. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Shen Q, Fu J, Jiang F, Wang L and Wang Y: Analysis of lncRNA UCA1-related downstream pathways and molecules of cisplatin resistance in lung adenocarcinoma. J Clin Lab Anal. 34:e233122020. View Article : Google Scholar : PubMed/NCBI | |
Ha Y, Chon YE, Kim MN, Lee JH and Hwang SG: Gamma-glutamyl transpeptidase dynamics as a biomarker for advanced fibrosis in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 37:1624–1632. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Xu L and Xu M: Gamma-glutamyl transpeptidase to albumin ratio holds a prognostic significance after hepatectomy in patients with hepatocellular carcinoma and liver cirrhosis. Asian J Surg. 46:1327–1328. 2023. View Article : Google Scholar | |
Yamada Y, Ishizaki M, Kido T, Honda R, Tsuritani I, Ikai E and Yamaya H: Alcohol, high blood pressure, and serum gamma-glutamyl transpeptidase level. Hypertension. 18:819–826. 1991. View Article : Google Scholar : PubMed/NCBI | |
Takemura K, Board PG and Koga F: A systematic review of serum γ-glutamyltransferase as a prognostic biomarker in patients with genitourinary cancer. Antioxidants (Basel). 10:5492021. View Article : Google Scholar | |
Chen RQ, Zhang ZL, Jia YM, Chen RX and Peng L: Preoperative CA19-9 and GGT ratio as a prognostic indicator in ampullary carcinoma. BMC Gastroenterol. 23:722023. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Gao J, Sun X, Song Y, Zhang Q, Zhang P and Ding C: A water-soluble fluorescent probe for the determination of γ-glutamyltransferase activity and its application in tumor imaging. Talanta. 253:1239432023. View Article : Google Scholar | |
Gao D, Miao Y, Ye S, Lu C, Lv G, Li K, Yu C, Lin J and Qiu L: A fluorine-18 labeled radiotracer for PET imaging of γ-glutamyltranspeptidase in living subjects. RSC Adv. 11:18738–18747. 2021. View Article : Google Scholar | |
Ou-Yang J, Li Y, Jiang WL, He SY, Liu HW and Li CY: Fluorescence-guided cancer diagnosis and surgery by a zero cross-talk ratiometric near-infrared γ-glutamyltranspeptidase fluorescent probe. Anal Chem. 91:1056–1063. 2019. View Article : Google Scholar | |
Jin Y, Wang Z, He D, Zhu Y, Gong L, Xiao M, Chen X and Cao K: Analysis of ferroptosis-mediated modification patterns and tumor immune microenvironment characterization in uveal melanoma. Front Cell Dev Biol. 9:6851202021. View Article : Google Scholar : PubMed/NCBI | |
Mehta V, Meena J, Kasana H, Munshi A and Chander H: Prognostic significance of CHAC1 expression in breast cancer. Mol Biol Rep. 49:8517–8526. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jahn B, Arvandi M, Rochau U, Fiegl H, Goebel G, Marth C and Siebert U: Development of a novel prognostic score for breast cancer patients using mRNA expression of CHAC1. J Comp Eff Res. 6:563–574. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Hu B, Zhu S and Wu Y: Exploring a ferroptosis and oxidative stress-based prognostic model for clear cell renal cell carcinoma. Front Oncol. 13:11314732023. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Lei C, Wang Y, Guo D, Zhang S, Wang X, Zhang Z, Wang Y and Ma W: Prognostic prediction model for glioblastoma: A ferroptosis-related gene prediction model and independent external validation. J Clin Med. 12:13412023. View Article : Google Scholar : PubMed/NCBI | |
Ahluwalia GS, Grem JL, Hao Z and Cooney DA: Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther. 46:243–271. 1990. View Article : Google Scholar : PubMed/NCBI | |
Viña JR, Palacin M, Puertes IR, Hernandez R and Viña J: Role of the gamma-glutamyl cycle in the regulation of amino acid translocation. Am J Physiol. 257:E916–E922. 1989.PubMed/NCBI | |
Xie Z, Kawasaki T, Zhou H, Okuzaki D, Okada N and Tachibana M: Targeting GGT1 eliminates the tumor-promoting effect and enhanced immunosuppressive function of myeloid-derived suppressor cells caused by G-CSF. Front Pharmacol. 13:8737922022. View Article : Google Scholar : PubMed/NCBI | |
Stevens AM, Xiang M, Heppler LN, Tošić I, Jiang K, Munoz JO, Gaikwad AS, Horton TM, Long X, Narayanan P, et al: Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Blood Adv. 3:4215–4227. 2019. View Article : Google Scholar : PubMed/NCBI | |
U Ferreira MJ: Natural product-derived compounds for targeting multidrug resistance in cancer and microorganisms. Int J Mol Sci. 24:143212023. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Aref AR, Sethi G, Ertas YN and Wang L: Natural product/diet-based regulation of macrophage polarization: Implications in treatment of inflammatory-related diseases and cancer. J Nutr Biochem. 1096472024. View Article : Google Scholar : PubMed/NCBI | |
Lyons SD, Sant ME and Christopherson RI: Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia. J Biol Chem. 265:11377–11381. 1990. View Article : Google Scholar : PubMed/NCBI | |
Guan Z, Chen J, Li X and Dong N: Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci Rep. 40:BSR202018072020. View Article : Google Scholar : PubMed/NCBI | |
Townsend DM, Deng M, Zhang L, Lapus MG and Hanigan MH: Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 14:1–10. 2003. View Article : Google Scholar | |
Azouz AA, Abdel-Nassir Abdel-Razek E and Abo-Youssef AM: Amlodipine alleviates cisplatin-induced nephrotoxicity in rats through gamma-glutamyl transpeptidase (GGT) enzyme inhibition, associated with regulation of Nrf2/HO-1, MAPK/NF-κB, and Bax/Bcl-2 signaling. Saudi Pharm J. 28:1317–1325. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Lu F, Chang Z, Li J, Gao Y, Zhou J, Luo Y, Lai Y, Cao S, Li X, et al: Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun. 14:47582023. View Article : Google Scholar : PubMed/NCBI | |
Sumi D, Taguchi H, Takeuchi K and Fujishiro H: CHAC1 exacerbates arsenite cytotoxicity by lowering intracellular glutathione levels. J Toxicol Sci. 48:487–494. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Fan J, Xie P, Ahn J, Fernandez M, Billingham LK, Miska J, Wu JD, Wainwright DA, Fang D, et al: CD8+ T cells sustain antitumor response by mediating crosstalk between adenosine A2A receptor and glutathione/GPX4. J Clin Invest. 134:e1700712024. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Liu T and Chen J: Anisomycin has the potential to induce human ovarian cancer stem cell ferroptosis by influencing glutathione metabolism and autophagy signal transduction pathways. J Cancer. 14:1202–1215. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu CX, Gao Y, Xu XF, Jin X, Zhang Y, Xu Q, Ding HX, Li BJ, Du FK, Li LC, et al: Bile acids inhibit ferroptosis sensitivity through activating farnesoid X receptor in gastric cancer cells. World J Gastroenterol. 30:485–498. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mitrić A and Castellano I: Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radic Biol Med. 208:672–683. 2023. View Article : Google Scholar | |
Pompella A, Corti A, Paolicchi A, Giommarelli C and Zunino F: Gamma-glutamyltransferase, redox regulation and cancer drug resistance. Curr Opin Pharmacol. 7:360–366. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bai C, Zhang M, Zhang Y, He Y, Dou H, Wang Z, Wang Z, Li Z and Zhang L: Gamma-glutamyltransferase activity (GGT) is a long-sought biomarker of redox status in blood circulation: A retrospective clinical study of 44 types of human diseases. Oxid Med Cell Longev. 2022:84940762022. View Article : Google Scholar : PubMed/NCBI | |
Hamano M, Tomonaga S, Osaki Y, Oda H, Kato H and Furuya S: Transcriptional activation of Chac1 and other Atf4-target genes induced by extracellular l-serine depletion is negated with glycine consumption in Hepa1-6 hepatocarcinoma cells. Nutrients. 12:30182020. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Cai Q, Zhang S, Wu X, Ying P, Ke J and Yang Z: Treatment with paraquat affects the expression of ferroptosis-related genes. Hum Exp Toxicol. 42:96032712311675852023. View Article : Google Scholar : PubMed/NCBI | |
Dosumu OA, Rotimi SO, Adeleye OO, Akamo AJ, Osinuga KT, Taiwo OA, Omotosho OO and Sani LO: Vitamin K protects against 7,12-dimethylbenz(A)anthracene induced hepatotoxicity in Wistar rats. Environ Toxicol. 36:362–373. 2021. View Article : Google Scholar | |
Schreiber CL and Smith BD: Molecular imaging of aminopeptidase N in cancer and angiogenesis. Contrast Media Mol Imaging. 2018:53151722018. View Article : Google Scholar : PubMed/NCBI | |
Amin SA, Adhikari N and Jha T: Design of aminopeptidase N inhibitors as anti-cancer agents. J Med Chem. 61:6468–6490. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, et al: Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci USA. 109:1637–1642. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shi L, Deng Y, Qu M, Mao S, Xu L, Xu W and Fang C: Inhibition of leucine aminopeptidase 3 suppresses invasion of ovarian cancer cells through down-regulation of fascin and MMP-2/9. Eur J Pharmacol. 768:116–122. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Zhang N, Chen C, Xu X, Luo A, Yan Y, Lu Y, Liu J, Ou X, Tan Y, et al: Sevoflurane induces ferroptosis of glioma cells through activating the ATF4-CHAC1 pathway. Front Oncol. 12:8596212022. View Article : Google Scholar : PubMed/NCBI | |
Wen YF, Yang XZ, Zeng LS, Peng HH, Huang WJ, Cai LM, Zhou TC and Lin XD: Prognostic impact of pretherapeutic gamma-glutamyltransferase on patients with nasopharyngeal carcinoma. PLoS One. 12:e01723452017. View Article : Google Scholar : PubMed/NCBI | |
Mujawar SJ, Suchitra G, Kosandal KA, Choudhari S, Inamdar NA and Ahmed KB: Evaluation of salivary gamma-glutamyl transpeptidase as a biomarker in oral squamous cell carcinoma and precancerous lesions. J Oral Maxillofac Pathol. 24:5842020. View Article : Google Scholar | |
Mizushima T, Ohnishi S, Shimizu Y, Hatanaka Y, Hatanaka KC, Hosono H, Kubota Y, Natsuizaka M, Kamiya M, Ono S, et al: Fluorescent imaging of superficial head and neck squamous cell carcinoma using a γ-glutamyltranspeptidase-activated targeting agent: A pilot study. BMC Cancer. 16:4112016. View Article : Google Scholar | |
Lee YJ, Han KD, Kim DH and Lee CH: Determining the association between repeatedly elevated serum gamma-glutamyltransferase levels and risk of respiratory cancer: A nationwide population-based cohort study. Cancer Med. 10:1366–1376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Xie R, Zhao Y, Zhao Z, Xu D, Ding M, Lin T, Xu W, Nie Z, Miao E, et al: A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer. Front Oncol. 12:9382922022. View Article : Google Scholar | |
Foddis R, Franzini M, Bonotti A, Marino R, Silvestri R, Fallahi P, Chiappino D, Emdin M, Paolicchi A and Cristaudo A: Big and free fractions of gamma-glutamyltransferase: New diagnostic biomarkers for malignant mesothelioma? Diagnostics (Basel). 12:3112022. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang XP, Li XH, Chen H, Zheng X, Lin JH, Kang T, Zhang L and Chen PS: Prognostic value of pretreatment serum alanine aminotransferase/aspartate aminotransferase (ALT/AST) ratio and gamma glutamyltransferase (GGT) in patients with esophageal squamous cell carcinoma. BMC Cancer. 17:5442017. View Article : Google Scholar : PubMed/NCBI | |
Choi YJ, Lee DH, Han KD, Yoon H, Shin CM, Park YS and Kim N: Elevated serum gamma-glutamyltransferase is associated with an increased risk of oesophageal carcinoma in a cohort of 8,388,256 Korean subjects. PLoS One. 12:e01770532017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu H, Zhang J, Wu Y, Zhou W, Cheng Z, Lou J, Zheng S, Bi X, Wang J, et al: Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: A multicenter study from China. BMC Cancer. 21:12992021. View Article : Google Scholar : PubMed/NCBI | |
Catalano M, Roviello G, Aprile G, Ramello M, Conca R, Petrioli R, Perrone G, Ianza A and Mini E: Prognostic value of alkaline phosphatase and gamma-glutamyl transferase in patients with metastatic pancreatic cancer. Future Oncol. 19:937–946. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liao W, Yang Y, Yang H, Qu Y, Song H and Li Q: Circulating gamma-glutamyl transpeptidase and risk of pancreatic cancer: A prospective cohort study in the UK Biobank. Cancer Med. 12:7877–7887. 2023. View Article : Google Scholar | |
Hong SW, Lee HJ, Han K, Moon JM, Park S, Soh H, Kang EA, Chun J, Im JP and Kim JS: Risk of gastrointestinal cancer in patients with an elevated level of gamma-glutamyltransferase: A nationwide population-based study. PLoS One. 16:e02450522021. View Article : Google Scholar : PubMed/NCBI | |
Yang S, He X, Liu Y, Ding X, Jiang H, Tan Y and Lu H: Prognostic significance of serum uric acid and gamma-glutamyltransferase in patients with advanced gastric cancer. Dis Markers. 2019:14154212019. View Article : Google Scholar : PubMed/NCBI | |
Hong TC, Yang HC, Chen CL, Kao JH, Liu CJ, Chen MJ, Wang HY, Kuo YC, Yu LY and Hu KC: Relationship between serum gamma-glutamyl transferase level and colorectal adenoma. PLoS One. 15:e02404452020. View Article : Google Scholar : PubMed/NCBI | |
Yang LH, Xu LZ, Huang ZJ, Pan HH, Wu M, Wu QY, Lu T, Zhang YP, Zhu YB, Wu JB, et al: Comprehensive analysis of immune ferroptosis gene in renal clear cell carcinoma: Prognosis and influence of tumor microenvironment. Am J Transl Res. 14:5982–6010. 2022.PubMed/NCBI | |
Horie K, Kawakami K, Fujita Y, Matsuda Y, Arai T, Suzui N, Miyazaki T, Koie T, Mizutani K and Ito M: Serum exosomal gamma-glutamyltransferase activity increased in patients with renal cell carcinoma with advanced clinicopathological features. Oncology. 98:734–742. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pankevičiūtė-Bukauskienė M, Mikalayeva V, Žvikas V, Skeberdis VA and Bordel S: Multi-omics analysis revealed increased de novo synthesis of serine and lower activity of the methionine cycle in breast cancer cell lines. Molecules. 28:45352023. View Article : Google Scholar | |
Seol A, Wang W, Kim SI, Han Y, Park IS, Yoo J, Jo H, Han KD and Song YS: Enhanced susceptibility to breast cancer in Korean women with elevated serum gamma-glutamyltransferase levels: A nationwide population-based cohort study. Front Oncol. 11:6686242021. View Article : Google Scholar : PubMed/NCBI | |
Shi B, Zhang Z, Jin Q, Wang Z, Tang J, Xu G, Zhu T, Gong X, Tang X and Zhao C: Selective tracking of ovarian-cancer-specific γ-glutamyltranspeptidase using a ratiometric two-photon fluorescent probe. J Mater Chem B. 6:7439–7443. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schwameis R, Grimm C, Brodowicz T, Petru E, Hefler-Frischmuth K, Staudigl C, Reinthaller A, Heinze G, Polterauer S and Polterauer M: Gamma-glutamyltransferase as novel biomarker in patients with uterine leiomyosarcoma. Sci Rep. 6:337572016. View Article : Google Scholar : PubMed/NCBI | |
Polterauer S, Hofstetter G, Grimm C, Rahhal J, Mailath-Pokorny M, Kohl M, Concin N, Tempfer C, Marth C and Reinthaller A: Relevance of gamma-glutamyltransferase-a marker for apoptotic balance-in predicting tumor stage and prognosis in cervical cancer. Gynecol Oncol. 122:590–594. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kawakami K, Fujita Y, Matsuda Y, Arai T, Horie K, Kameyama K, Kato T, Masunaga K, Kasuya Y, Tanaka M, et al: Gamma-glutamyltransferase activity in exosomes as a potential marker for prostate cancer. BMC Cancer. 17:3162017. View Article : Google Scholar : PubMed/NCBI | |
Su S, Liu L, Sun C, Nie Y, Guo H, Hu Y, Guo S and Pang S: Preoperative serum gamma-glutamyltransferase as a prognostic biomarker in patients undergoing radical cystectomy for bladder cancer. Front Oncol. 11:6489042021. View Article : Google Scholar : PubMed/NCBI | |
Takemura K, Fukushima H, Ito M, Kataoka M, Nakanishi Y, Sakamoto K, Suzuki H, Tobisu KI and Koga F: Prognostic significance of serum γ-glutamyltransferase in patients with advanced urothelial carcinoma. Urol Oncol. 37:108–115. 2019. View Article : Google Scholar | |
Song Y, Tian S, Zhang P, Zhang N, Shen Y and Deng J: Construction and validation of a novel ferroptosis-related prognostic model for acute myeloid leukemia. Front Genet. 12:7086992022. View Article : Google Scholar : PubMed/NCBI | |
Watanabe B, Tabuchi Y, Wada K and Hiratake J: Synthesis and evaluation of the inhibitory activity of the four stereoisomers of the potent and selective human γ-glutamyl transpeptidase inhibitor GGsTop. Bioorg Med Chem Lett. 27:4920–4924. 2017. View Article : Google Scholar : PubMed/NCBI | |
Han L, Hiratake J, Kamiyama A and Sakata K: Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase. Biochemistry. 46:1432–1447. 2007. View Article : Google Scholar : PubMed/NCBI | |
King JB, West MB, Cook PF and Hanigan MH: A novel, species-specific class of uncompetitive inhibitors of gamma-glutamyl transpeptidase. J Biol Chem. 284:9059–9065. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhai X, Dai T, Chi Z, Zhao Z, Wu G, Yang S and Dong D: Naringin alleviates acetaminophen-induced acute liver injury by activating Nrf2 via CHAC2 upregulation. Environ Toxicol. 37:1332–1342. 2022. View Article : Google Scholar : PubMed/NCBI |