1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ettinger DS, Akerley W, Borghaei H, Chang
AC, Cheney RT, Chirieac LR, D'Amico TA, Demmy TL, Ganti AK,
Govindan R, et al: Non-small cell lung cancer. J Natl Compr Canc
Netw. 10:1236–1271. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zarogoulidis K, Zarogoulidis P, Darwiche
K, Boutsikou E, Machairiotis N, Tsakiridis K, Katsikogiannis N,
Kougioumtzi I, Karapantzos I, Huang H and Spyratos D: Treatment of
non-small cell lung cancer (NSCLC). J Thorac Dis. 5(Suppl 4):
S389–S396. 2013.PubMed/NCBI
|
4
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bunn PA Jr: The expanding role of
cisplatin in the treatment of non-small-cell lung cancer. Semin
Oncol. 16(4 Suppl 6): S10–S21. 1989.
|
6
|
Minami D, Takigawa N, Takeda H, Takata M,
Ochi N, Ichihara E, Hisamoto A, Hotta K, Tanimoto M and Kiura K:
Synergistic effect of olaparib with combination of cisplatin on
PTEN-deficient lung cancer cells. Mol Cancer Res. 11:140–148. 2013.
View Article : Google Scholar
|
7
|
Cui Z, Li D, Zhao J and Chen K: Falnidamol
and cisplatin combinational treatment inhibits non-small cell lung
cancer (NSCLC) by targeting DUSP26-mediated signal pathways. Free
Radic Biol Med. 183:106–124. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Han Y, Shi J, Xu Z, Zhang Y, Cao X, Yu J,
Li J and Xu S: Identification of solamargine as a cisplatin
sensitizer through phenotypical screening in cisplatin-resistant
NSCLC organoids. Front Pharmacol. 13:8021682022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li H, Zhu X, Zhang Y, Xiang J and Chen H:
Arsenic trioxide exerts synergistic effects with cisplatin on
non-small cell lung cancer cells via apoptosis induction. J Exp
Clin Cancer Res. 28:1102009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xue DF, Pan ST, Huang G and Qiu JX: ROS
enhances the cytotoxicity of cisplatin by inducing apoptosis and
autophagy in tongue squamous cell carcinoma cells. Int J Biochem
Cell Biol. 122:1057322020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kleih M, Böpple K, Dong M, Gaißler A,
Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of
cisplatin on mitochondria induces ROS production that dictates cell
fate of ovarian cancer cells. Cell Death Dis. 10:8512019.
View Article : Google Scholar : PubMed/NCBI
|
12
|
McWhinney SR, Goldberg RM and McLeod HL:
Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther. 8:10–16.
2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu Y, Song Z, Liu Y, Ma X, Wang W, Ke Y,
Xu Y, Yu D and Liu H: Identification of ferroptosis as a novel
mechanism for antitumor activity of natural product derivative a2
in gastric cancer. Acta Pharm Sin B. 11:1513–1525. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin J, Qiu S, Wang P, Liang X, Huang F, Wu
H, Zhang B, Zhang W, Tian X, Xu R, et al: Cardamonin inhibits
breast cancer growth by repressing HIF-1α-dependent metabolic
reprogramming. J Exp Clin Cancer Res. 38:3772019. View Article : Google Scholar
|
15
|
Wang L, Wang C, Tao Z, Zhao L, Zhu Z, Wu
W, He Y, Chen H, Zheng B, Huang X, et al: Curcumin derivative WZ35
inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in
breast cancer. J Exp Clin Cancer Res. 38:4602019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu Y, Chen D, Wu T, Lin H, Ni L, Sui H,
Xiao S, Wang C, Jiang S, Pan H, et al: Dihydroartemisinin enhances
the anti-tumor activity of oxaliplatin in colorectal cancer cells
by altering PRDX2-reactive oxygen species-mediated multiple
signaling pathways. Phytomedicine. 98:1539322022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ye J, Piao H, Jiang J, Jin G, Zheng M,
Yang J, Jin X, Sun T, Choi YH, Li L and Yan G: Polydatin inhibits
mast cell-mediated allergic inflammation by targeting PI3K/Akt,
MAPK, NF-κB and Nrf2/HO-1 pathways. Sci Rep. 7:118952017.
View Article : Google Scholar
|
18
|
Hogg SJ, Chitcholtan K, Hassan W, Sykes PH
and Garrill A: Resveratrol, acetyl-resveratrol, and polydatin
exhibit antigrowth activity against 3D cell aggregates of the
SKOV-3 and OVCAR-8 ovarian cancer cell lines. Obstet Gynecol Int.
2015:2795912015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen S, Tao J, Zhong F, Jiao Y, Xu J, Shen
Q, Wang H, Fan S and Zhang Y: Polydatin down-regulates the
phosphorylation level of Creb and induces apoptosis in human breast
cancer cell. PLoS One. 12:e01765012017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang CQ, Ma LL, Lv ZD, Feng F, Chen Z and
Liu ZD: Polydatin induces apoptosis and autophagy via STAT3
signaling in human osteosarcoma MG-63 cells. J Nat Med. 74:533–544.
2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao W, Chen Z and Guan M: Polydatin
enhances the chemosensitivity of osteosarcoma cells to paclitaxel.
J Cell Biochem. 120:17481–17490. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Quagliariello V, Berretta M, Buccolo S,
Iovine M, Paccone A, Cavalcanti E, Taibi R, Montopoli M, Botti G
and Maurea N: Polydatin reduces cardiotoxicity and enhances the
anticancer effects of sunitinib by decreasing pro-oxidative stress,
pro-inflammatory cytokines, and NLRP3 inflammasome expression.
Front Oncol. 11:6807582021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bedard K and Krause KH: The NOX family of
ROS-generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim SL, Choi HS, Kim JH, Jeong DK, Kim KS
and Lee DS: Dihydrotanshinone-induced NOX5 activation inhibits
breast cancer stem cell through the ROS/Stat3 signaling pathway.
Oxid Med Cell Longev. 2019:92964392019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang Z, Su Q, Li W, Ren H, Huang H and
Wang A: Suppressed mitochondrial respiration via NOX5-mediated
redox imbalance contributes to the antitumor activity of anlotinib
in oral squamous cell carcinoma. J Genet Genomics. 48:582–594.
2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Bae H, Lee W, Song J, Hong T, Kim MH, Ham
J, Song G and Lim W: Polydatin counteracts 5-fluorouracil
resistance by enhancing apoptosis via calcium influx in colon
cancer. Antioxidants (Basel). 10:14772021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bai L, Ma Y, Wang X, Feng Q, Zhang Z, Wang
S, Zhang H, Lu X, Xu Y, Zhao E and Cui H: Polydatin inhibits cell
viability, migration, and invasion through suppressing the c-Myc
expression in human cervical cancer. Front Cell Dev Biol.
9:5872182021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bang TH, Park BS, Kang HM, Kim JH and Kim
IR: Polydatin, a glycoside of resveratrol, induces apoptosis and
inhibits metastasis oral squamous cell carcinoma cells in vitro.
Pharmaceuticals (Basel). 14:9022021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu H, Zhao S, Zhang Y, Wu J, Peng H, Fan
J and Liao J: Reactive oxygen species-mediated endoplasmic
reticulum stress and mitochondrial dysfunction contribute to
polydatin-induced apoptosis in human nasopharyngeal carcinoma CNE
cells. J Cell Biochem. 112:3695–3703. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar
|
32
|
Verfaillie T, Rubio N, Garg AD, Bultynck
G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A
and Agostinis P: PERK is required at the ER-mitochondrial contact
sites to convey apoptosis after ROS-based ER stress. Cell Death
Differ. 19:1880–1891. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Balsa E, Soustek MS, Thomas A, Cogliati S,
García-Poyatos C, Martín-García E, Jedrychowski M, Gygi SP,
Enriquez JA and Puigserver P: ER and nutrient stress promote
assembly of respiratory chain supercomplexes through the PERK-eIF2α
axis. Mol Cell. 74:877–890.e6. 2019. View Article : Google Scholar
|
34
|
Trachootham D, Alexandre J and Huang P:
Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Sui X, Kong N, Ye L, Han W, Zhou J, Zhang
Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of
apoptosis and autophagy in response to chemotherapeutic agents.
Cancer Lett. 344:174–179. 2014. View Article : Google Scholar
|
36
|
Kwak AW, Lee MJ, Lee MH, Yoon G, Cho SS,
Chae JI and Shim JH: The 3-deoxysappanchalcone induces ROS-mediated
apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway
in human esophageal cancer cells. Phytomedicine. 86:1535642021.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang WC, Li X, Liu J, Lin J and Chung
LWK: Activation of androgen receptor, lipogenesis, and oxidative
stress converged by SREBP-1 is responsible for regulating growth
and progression of prostate cancer cells. Mol Cancer Res.
10:133–142. 2012. View Article : Google Scholar
|
38
|
Park S, Oh SS, Lee KW, Lee YK, Kim NY, Kim
JH, Yoo J and Kim KD: NDRG2 contributes to cisplatin sensitivity
through modulation of BAK-to-Mcl-1 ratio. Cell Death Dis. 9:302018.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Brahmer J, Reckamp KL, Baas P, Crinò L,
Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE,
Holgado E, et al: Nivolumab versus Docetaxel in advanced
squamous-cell non-small-cell lung cancer. N Engl J Med.
373:123–135. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rotow J and Bivona TG: Understanding and
targeting resistance mechanisms in NSCLC. Nat Rev Cancer.
17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fennell DA, Summers Y, Cadranel J, Benepal
T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C and Ferry
D: Cisplatin in the modern era: The backbone of first-line
chemotherapy for non-small cell lung cancer. Cancer Treat Rev.
44:42–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen W, Li P, Liu Y, Yang Y, Ye X, Zhang F
and Huang H: Isoalantolactone induces apoptosis through
ROS-mediated ER stress and inhibition of STAT3 in prostate cancer
cells. J Exp Clin Cancer Res. 37:3092018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu M, Fan Y, Li D, Han B, Meng Y, Chen F,
Liu T, Song Z, Han Y, Huang L, et al: Ferroptosis inducer erastin
sensitizes NSCLC cells to celastrol through activation of the
ROS-mitochondrial fission-mitophagy axis. Mol Oncol. 15:2084–2105.
2021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sioud F, Amor S, Toumia IB, Lahmar A,
Aires V, Chekir-Ghedira L and Delmas D: A new highlight of Ephedra
alata decne properties as potential adjuvant in combination with
cisplatin to induce cell death of 4t1 breast cancer cells in vitro
and in vivo. Cells. 9:3622020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Araújo RF Jr, Soares LA, da Costa Porto
CR, de Aquino RG, Guedes HG, Petrovick PR, de Souza TP, Araújo AA
and Guerra GC: Growth inhibitory effects of Phyllanthus niruri
extracts in combination with cisplatin on cancer cell lines. World
J Gastroenterol. 18:4162–6168. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Li J, Zhang J, Zhu Y, Afolabi LO, Chen L
and Feng X: Natural compounds, optimal combination of brusatol and
polydatin promote anti-tumor effect in breast cancer by targeting
Nrf2 signaling pathway. Int J Mol Sci. 24:82652023. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cao WJ, Wu K, Wang C and Wan DM:
Polydatin-induced cell apoptosis and cell cycle arrest are
potentiated by Janus kinase 2 inhibition in leukemia cells. Mol Med
Rep. 13:3297–3302. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cao X, Fu M, Bi R, Zheng X, Fu B, Tian S,
Liu C, Li Q and Liu J: Cadmium induced BEAS-2B cells apoptosis and
mitochondria damage via MAPK signaling pathway. Chemosphere.
263:1283462021. View Article : Google Scholar
|
49
|
Chen J, Wang Y, Zhang W, Zhao D, Zhang L,
Fan J, Li J and Zhan Q: Membranous NOX5-derived ROS oxidizes and
activates local Src to promote malignancy of tumor cells. Signal
Transduct Target Ther. 5:1392020. View Article : Google Scholar : PubMed/NCBI
|
50
|
da Silva JF, Alves JV, Silva-Neto JA,
Costa RM, Neves KB, Alves-Lopes R, Carmargo LL, Rios FJ, Montezano
AC, Touyz RM and Tostes RC: Lysophosphatidylcholine induces
oxidative stress in human endothelial cells via NOX5
activation-implications in atherosclerosis. Clin Sci (Lond).
135:1845–1858. 2021. View Article : Google Scholar : PubMed/NCBI
|