Current development of molecular classifications of gastric cancer based on omics (Review)
- Authors:
- Yubo Ma
- Zhengchen Jiang
- Libin Pan
- Ying Zhou
- Ruihong Xia
- Zhuo Liu
- Li Yuan
-
Affiliations: The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China, Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China, Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, P.R. China, Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China; - Published online on: August 1, 2024 https://doi.org/10.3892/ijo.2024.5677
- Article Number: 89
-
Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, Chua C, Feng Z, Guan YK, Ooi CH, et al: Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 145:554–565. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F and Cree IA; WHO Classification of Tumours Editorial Board: The 2019 WHO classification of tumours of the digestive system. Histopathology. 76:182–188. 2020. View Article : Google Scholar : | |
Lauren P: The two histological main types of gastric carcinoma: Diffuse and So-called intestinal-type carcinoma. An attempt at a Histo-clinical classification. Acta Pathol Microbiol Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Sugano H and Takagi K: Carcinoma of the stomach in incipient phase: Its histogenesis and histological appearances. Gan. 59:251–258. 1968.PubMed/NCBI | |
Korfer J, Lordick F and Hacker UT: Molecular targets for gastric cancer treatment and future perspectives from a clinical and translational point of view. Cancers (Basel). 13:52162021. View Article : Google Scholar : PubMed/NCBI | |
Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C and Shepard HM: Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother. 37:255–263. 1993. View Article : Google Scholar : PubMed/NCBI | |
Park JB, Rhim JS, Park SC, Kimm SW and Kraus MH: Amplification, overexpression, and rearrangement of the erbB-2 protooncogene in primary human stomach carcinomas. Cancer Res. 49:6605–6609. 1989.PubMed/NCBI | |
Maeda K, Chung YS, Ogawa Y, Ko T, Ogawa M, Onoda N, Kato Y, Arimoto Y, Nitta A and Sowa M: Expression of vascular endothelial cell growth factor as a predictor of recurrence in gastric carcinoma. Gan To Kagaku Ryoho. 22:699–701. 1995.In Japanese. PubMed/NCBI | |
Maeda K, Chung YS, Ogawa Y, Takatsuka S, Kang SM, Ogawa M, Sawada T and Sowa M: Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer. 77:858–863. 1996. View Article : Google Scholar : PubMed/NCBI | |
Guan WL, He Y and Xu RH: Gastric cancer treatment: Recent progress and future perspectives. J Hematol Oncol. 16:572023. View Article : Google Scholar : PubMed/NCBI | |
Alsina M, Arrazubi V, Diez M and Tabernero J: Current developments in gastric cancer: From molecular profiling to treatment strategy. Nat Rev Gastroenterol Hepatol. 20:155–170. 2023. View Article : Google Scholar | |
Shah MA, Khanin R, Tang L, Janjigian YY, Klimstra DS, Gerdes H and Kelsen DP: Molecular classification of gastric cancer: A new paradigm. Clin Cancer Res. 17:2693–2701. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan IB, Ivanova T, Lim KH, Ong CW, Deng N, Lee J, Tan SH, Wu J, Lee MH, Ooi CH, et al: Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology. 141:476–485. e1–e11. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network: Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 513:202–209. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Cheng WY, Shi H, Huang S, Chen H, Liu D, Xu W, Yu J and Wang J: Classifying gastric cancer using FLORA reveals clinically relevant molecular subtypes and highlights LINC01614 as a biomarker for patient prognosis. Oncogene. 40:2898–2909. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li L and Wang X: Identification of gastric cancer subtypes based on pathway clustering. NPJ Precis Oncol. 5:462021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Qin J, Dong C, Yang J, Yang M, Tian J and Zhong X: Identification of four gastric cancer subtypes based on genetic analysis of cholesterogenic and glycolytic pathways. Bioengineered. 12:4780–4793. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li L and Ma J: Molecular characterization of metabolic subtypes of gastric cancer based on metabolism-related lncRNA. Sci Rep. 11:214912021. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Feng M, Shen H, Shen X, Hu J, Liu J, Yang Y, Li Y, Yang M, Wang W, et al: Prediction of two molecular subtypes of gastric cancer based on immune signature. Front Genet. 12:7934942021. View Article : Google Scholar | |
Ning ZK, Hu CG, Liu J, Tian HK, Yu ZL, Zhou HN, Li H and Zong Z: The hypoxic landscape stratifies gastric cancer into 3 subtypes with distinct M6a methylation and tumor microenvironment infiltration characteristics. Front Immunol. 13:8600412022. View Article : Google Scholar | |
Zhu Y, Zhao Y, Cao Z, Chen Z and Pan W: Identification of three immune subtypes characterized by distinct tumor immune microenvironment and therapeutic response in stomach adenocarcinoma. Gene. 818:1461772022. View Article : Google Scholar : PubMed/NCBI | |
He F, Ding H, Zhou Y, Wang Y, Xie J, Yang S and Zhu Y: Depiction of Aging-Based molecular phenotypes with diverse clinical prognosis and immunological features in gastric cancer. Front Med (Lausanne). 8:7927402021. View Article : Google Scholar | |
Li B, Zhang F, Niu Q, Liu J, Yu Y, Wang P, Zhang S, Zhang H and Wang Z: A molecular classification of gastric cancer associated with distinct clinical outcomes and validated by an XGBoost-based prediction model. Mol Ther Nucleic Acids. 31:224–240. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Zhao L, Chen J, Jin G, Huang Q, Zhu M, Dai R, Yuan Z, Chen J, Tang M, et al: Identification of three metabolic subtypes in gastric cancer and the construction of a metabolic pathway-based risk model that predicts the overall survival of GC patients. Front Genet. 14:10948382023. View Article : Google Scholar : PubMed/NCBI | |
Tao G, Wen X, Wang X and Zhou Q: Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in gastric cancer. Sci Rep. 13:87872023. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Wang Z, Wang Q, Chen K, Han Q, Bai S, Du J and Chen W: Molecular classification reveals the diverse genetic and prognostic features of gastric cancer: A multi-omics consensus ensemble clustering. Biomed Pharmacother. 144:1122222021. View Article : Google Scholar : PubMed/NCBI | |
Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, et al: Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 21:449–456. 2015. View Article : Google Scholar : PubMed/NCBI | |
Loh M, Liem N, Vaithilingam A, Lim PL, Sapari NS, Elahi E, Mok ZY, Cheng CL, Yan B, Pang B, et al: DNA methylation subgroups and the CpG island methylator phenotype in gastric cancer: A comprehensive profiling approach. BMC Gastroenterol. 14:552014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Bai W and Zhang X: Identifying heterogeneous subtypes of gastric cancer and subtype-specific subpaths of microRNA-target pathways. Mol Med Rep. 17:3583–3590. 2018. | |
Oh SC, Sohn BH, Cheong JH, Kim SB, Lee JE, Park KC, Lee SH, Park JL, Park YY, Lee HS, et al: Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat Commun. 9:17772018. View Article : Google Scholar : PubMed/NCBI | |
Mun DG, Bhin J, Kim S, Kim H, Jung JH, Jung Y, Jang YE, Park JM, Kim H, Jung Y, et al: Proteogenomic characterization of human Early-Onset gastric cancer. Cancer Cell. 35:111–124.e10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, Yuan J, Chen R, Li Y, Ge Z, et al: A proteomic landscape of diffuse-type gastric cancer. Nat Commun. 9:10122018. View Article : Google Scholar : PubMed/NCBI | |
Tong M, Yu C, Shi J, Huang W, Ge S, Liu M, Song L, Zhan D, Xia X, Liu W, et al: Phosphoproteomics enables molecular subtyping and nomination of kinase candidates for individual patients of Diffuse-Type gastric cancer. iScience. 22:44–57. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Ding Y, Chen Y, Jiang J, Chen Y, Lu J, Kong M, Mo F, Huang Y, Zhao W, et al: A novel genomic classification system of gastric cancer via integrating multidimensional genomic characteristics. Gastric Cancer. 24:1227–1241. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yuan L, Xu ZY, Xu JL, Chen GP, Guan X, Pan GZ, Hu C, Dong J, Du YA, et al: Integrative proteomic characterization of adenocarcinoma of esophagogastric junction. Nat Commun. 14:7782023. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Wang Y, Xu C, Li Y, Ge S, Bai B, Zhang K, Wang Y, Zheng N, Wang J, et al: Multilevel proteomic analyses reveal molecular diversity between diffuse-type and intestinal-type gastric cancer. Nat Commun. 14:8352023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Kunzke T, Prade VM, Shen J, Buck A, Feuchtinger A, Haffner I, Luber B, Liu DHW, Langer R, et al: Spatial metabolomics identifies distinct Tumor-Specific subtypes in gastric cancer patients. Clin Cancer Res. 28:2865–2877. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Gong J, Li X, Hu Z, Xu Y, Shi H, Li D, Liu G, Jie Y, Hu B and Chong Y: Unsupervised hierarchical clustering identifies immune gene subtypes in gastric cancer. Front Pharmacol. 12:6924542021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ge J, Wang Y, Xiong F, Guo J, Jiang X, Zhang L, Deng X, Gong Z, Zhang S, et al: EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun. 13:8662022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Liu Z, Zeng B, Hu G and Gan R: Epstein-Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 495:191–199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hirata T, Yamamoto H, Taniguchi H, Horiuchi S, Oki M, Adachi Y, Imai K and Shinomura Y: Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J Pathol. 211:516–523. 2007. View Article : Google Scholar : PubMed/NCBI | |
Corso G, Velho S, Paredes J, Pedrazzani C, Martins D, Milanezi F, Pascale V, Vindigni C, Pinheiro H, Leite M, et al: Oncogenic mutations in gastric cancer with microsatellite instability. Eur J Cancer. 47:443–451. 2011. View Article : Google Scholar | |
Mulkidjan RS, Saitova ES, Preobrazhenskaya EV, Asadulaeva KA, Bubnov MG, Otradnova EA, Terina DM, Shulga SS, Martynenko DE, Semina MV, et al: ALK, ROS1, RET and NTRK1-3 Gene fusions in colorectal and Non-colorectal microsatellite-unstable cancers. Int J Mol Sci. 24:136102023. View Article : Google Scholar : PubMed/NCBI | |
Chida K, Kawazoe A, Kawazu M, Suzuki T, Nakamura Y, Nakatsura T, Kuwata T, Ueno T, Kuboki Y, Kotani D, et al: A low tumor mutational burden and PTEN mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. Clin Cancer Res. 27:3714–3724. 2021. View Article : Google Scholar : PubMed/NCBI | |
Polom K, Das K, Marrelli D, Roviello G, Pascale V, Voglino C, Rho H, Tan P and Roviello F: KRAS mutation in gastric cancer and prognostication associated with microsatellite instability status. Pathol Oncol Res. 25:333–340. 2019. View Article : Google Scholar | |
Hwang HS, Kim D and Choi J: Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors. J Immunother Cancer. 9:e0027972021. View Article : Google Scholar : PubMed/NCBI | |
Giampieri R, Maccaroni E, Mandolesi A, Del Prete M, Andrikou K, Faloppi L, Bittoni A, Bianconi M, Scarpelli M, Bracci R, et al: Mismatch repair deficiency may affect clinical outcome through immune response activation in metastatic gastric cancer patients receiving first-line chemotherapy. Gastric Cancer. 20:156–163. 2017. View Article : Google Scholar | |
Kim KJ, Lee KS, Cho HJ, Kim YH, Yang HK, Kim WH and Kang GH: Prognostic implications of tumor-infiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum Pathol. 45:285–293. 2014. View Article : Google Scholar | |
Yoshida T, Ogura G, Tanabe M, Hayashi T, Ohbayashi C, Azuma M, Kunisaki C, Akazawa Y, Ozawa S, Matsumoto S, et al: Clinicopathological features of PD-L1 protein expression, EBV positivity, and MSI status in patients with advanced gastric and esophagogastric junction adenocarcinoma in Japan. Cancer Biol Ther. 23:191–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, Zhong X, Li X, Qian H, Wang X, et al: PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One. 12:e01826922017. View Article : Google Scholar : PubMed/NCBI | |
Dislich B, Mertz KD, Gloor B and Langer R: Interspatial distribution of tumor and immune cells in correlation with PD-L1 in molecular subtypes of gastric cancers. Cancers (Basel). 14:17362022. View Article : Google Scholar : PubMed/NCBI | |
He CY, Qiu MZ, Yang XH, Zhou DL, Ma JJ, Long YK, Ye ZL, Xu BH, Zhao Q, Jin Y, et al: Classification of gastric cancer by EBV status combined with molecular profiling predicts patient prognosis. Clin Transl Med. 10:353–362. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hawkins RD, Hon GC and Ren B: Next-generation genomics: An integrative approach. Nat Rev Genet. 11:476–486. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bornschein J, Wernisch L, Secrier M, Miremadi A, Perner J, MacRae S, O'Donovan M, Newton R, Menon S, Bower L, et al: Transcriptomic profiling reveals three molecular phenotypes of adenocarcinoma at the gastroesophageal junction. Int J Cancer. 145:3389–3401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T: EMT and MET in metastasis: Where are the cancer stem cells? Cancer Cell. 22:699–701. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP and Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pollak M: Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 8:915–928. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pollak M: The insulin and insulin-like growth factor receptor family in neoplasia: An update. Nat Rev Cancer. 12:159–169. 2012. View Article : Google Scholar : PubMed/NCBI | |
Werner H, Meisel-Sharon S and Bruchim I: Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol Cancer. 17:282018. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, et al: TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 554:544–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Zhou X, Li H, Su P, Liu S, Li R, Zou J, Wei X, Pan C, Zhang Z, et al: USP8 promotes cancer progression and extracellular vesicle-mediated CD8+ T cell exhaustion by deubiquitinating the TGF-β receptor TβRII. EMBO J. 41:e1087912022. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goldenring JR and Nomura S: Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. Am J Physiol Gastrointest Liver Physiol. 291:G999–G1004. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Zhu J, Chen S, Li T, Ma J, Guo S, Hu J, Yue T, Zhang J, Wang P, et al: Activated gastric cancer-associated fibroblasts contribute to the malignant phenotype and 5-FU resistance via paracrine action in gastric cancer. Cancer Cell Int. 18:1042018. View Article : Google Scholar : PubMed/NCBI | |
Howe LR, Subbaramaiah K, Hudis CA and Dannenberg AJ: Molecular pathways: Adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 19:6074–6083. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manousopoulou A, Hayden A, Mellone M, Garay-Baquero DJ, White CH, Noble F, Lopez M, Thomas GJ, Underwood TJ and Garbis SD: Quantitative proteomic profiling of primary cancer-associated fibroblasts in oesophageal adenocarcinoma. Br J Cancer. 118:1200–1207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Calcagno DQ, Leal MF, Assumpcao PP, Smith MA and Burbano RR: MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 14:5962–5968. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park KU, Lee HE, Park DJ, Jung EJ, Song J, Kim HH, Choe G, Kim WH and Lee HS: MYC quantitation in cell-free plasma DNA by real-time PCR for gastric cancer diagnosis. Clin Chem Lab Med. 47:530–536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Liu Y, Zhang S, Wei L, Cheng H and Wang J and Wang J: Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis. 13:3782022. View Article : Google Scholar : PubMed/NCBI | |
Davoli T, Uno H, Wooten EC and Elledge SJ: Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 355:eaaf83992017. View Article : Google Scholar : PubMed/NCBI | |
Gibney GT, Weiner LM and Atkins MB: Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17:e542–e551. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, Rittmeyer A, Fehrenbacher L, Otto G, Malboeuf C, et al: Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 24:1441–1448. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, Sabio EY, Makarov V, Kuo F, Blecua P, et al: Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 364:485–491. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Li L, Ren D, Song X, Mao B, Han B and Zhang H: Prognostic impact of gene copy number instability and tumor mutation burden in patients with resectable gastric cancer. Cancer Commun (Lond). 40:63–66. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang N, Li X, Chen X, Shen B, Zhu D, Zhu L, Xu Y, Yu Y and Shu Y: Tumor mutation burden as a biomarker in resected gastric cancer via its association with immune infiltration and hypoxia. Gastric Cancer. 24:823–834. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mani DR, Krug K, Zhang B, Satpathy S, Clauser KR, Ding L, Ellis M, Gillette MA and Carr SA: Cancer proteogenomics: Current impact and future prospects. Nat Rev Cancer. 22:298–313. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, et al: Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 534:55–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pozniak Y, Balint-Lahat N, Rudolph JD, Lindskog C, Katzir R, Avivi C, Pontén F, Ruppin E, Barshack I and Geiger T: System-wide clinical proteomics of breast cancer reveals global remodeling of tissue homeostasis. Cell Syst. 2:172–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, Dou Y, Zhang Y, Shi Z, Arshad OA, et al: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell. 177:1035–1049.e19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jayavelu AK, Wolf S, Buettner F, Alexe G, Häupl B, Comoglio F, Schneider C, Doebele C, Fuhrmann DC, Wagner S, et al: The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell. 40:301–317.e12. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Sun M, Chen L, Wang Y, Li Y, Li L, Zhang X, Cai Y, Qie J, Pang Y, et al: Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma. J Hematol Oncol. 15:1682022. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Chong X, Jiang F, Gao J, Chen Y, Jia K, Fan M, Liu X, An J, Li J, et al: Plasma extracellular vesicle derived protein profile predicting and monitoring immunotherapeutic outcomes of gastric cancer. J Extracell Vesicles. 11:e122092022. View Article : Google Scholar : PubMed/NCBI | |
Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL and Haanen J: Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer. 15:457–472. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S and Li Y: Targeting the IDO1 pathway in cancer: From bench to bedside. J Hematol Oncol. 11:1002018. View Article : Google Scholar : PubMed/NCBI | |
Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 117:451–460. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim RS, Song N, Gavin PG, Salgado R, Bandos H, Kos Z, Floris G, Eynden GGGMVD, Badve S, Demaria S, et al: Stromal tumor-infiltrating lymphocytes in NRG Oncology/NSABP B-31 adjuvant trial for Early-Stage HER2-Positive breast cancer. J Natl Cancer Inst. 111:867–871. 2019. View Article : Google Scholar : PubMed/NCBI | |
Paijens ST, Vledder A, de Bruyn M and Nijman HW: Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 18:842–859. 2021. View Article : Google Scholar : | |
Liu D, Heij LR, Czigany Z, Dahl E, Lang SA, Ulmer TF, Luedde T, Neumann UP and Bednarsch J: The role of tumor-infiltrating lymphocytes in cholangiocarcinoma. J Exp Clin Cancer Res. 41:1272022. View Article : Google Scholar : PubMed/NCBI | |
Lascarez-Lagunas LI, Nadarajan S, Martinez-Garcia M, Quinn JN, Todisco E, Thakkar T, Berson E, Eaford D, Crawley O, Montoya A, et al: ATM/ATR kinases link the synaptonemal complex and DNA double-strand break repair pathway choice. Curr Biol. 32:4719–4726.e4. 2022. View Article : Google Scholar : PubMed/NCBI | |
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, et al: CDK4/6 inhibition triggers anti-tumour immunity. Nature. 548:471–475. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pritzl CJ, Luera D, Knudson KM, Quaney MJ, Calcutt MJ, Daniels MA and Teixeiro E: IKK2/NFkB signaling controls lung resident CD8+ T cell memory during influenza infection. Nat Commun. 14:43312023. View Article : Google Scholar | |
Chang CP, Su YC, Lee PH and Lei HY: Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy. 9:619–621. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA and Miri SR: The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 8:287–297. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chevallay M, Bollschweiler E, Chandramohan SM, Schmidt T, Koch O, Demanzoni G, Mönig S and Allum W: Cancer of the gastroesophageal junction: A diagnosis, classification, and management review. Ann N Y Acad Sci. 1434:132–138. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vial M, Grande L and Pera M: Epidemiology of adenocarcinoma of the esophagus, gastric cardia, and upper gastric third. Recent Results Cancer Res. 182:1–17. 2010.PubMed/NCBI | |
Gao Y, Xin L, Lin H, Yao B, Zhang T, Zhou AJ, Huang S, Wang JH, Feng YD, Yao SH, et al: Machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: A nationwide, multicohort, prospective study. Lancet Gastroenterol Hepatol. 8:432–445. 2023. View Article : Google Scholar : PubMed/NCBI | |
Menghi F, Orzan FN, Eoli M, Farinotti M, Maderna E, Pisati F, Bianchessi D, Valletta L, Lodrini S, Galli G, et al: DNA microarray analysis identifies CKS2 and LEPR as potential markers of meningioma recurrence. Oncologist. 16:1440–1450. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qiu H, Lin X, Tang W, Liu C, Chen Y, Ding H, Kang M and Chen S: Investigation of TCF7L2, LEP and LEPR polymorphisms with esophageal squamous cell carcinomas. Oncotarget. 8:109107–109119. 2017. View Article : Google Scholar | |
Liu CR, Li Q, Hou C, Li H, Shuai P, Zhao M, Zhong XR, Xu ZP and Li JY: Changes in body mass index, leptin, and leptin receptor polymorphisms and breast cancer risk. DNA Cell Biol. 37:182–188. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Pan R, Qi Y, Zheng Z, Li J, Li H, Ying J, Xu M and Duan S: LEPR hypomethylation is significantly associated with gastric cancer in males. Exp Mol Pathol. 116:1044932020. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Wang X, Zhang Z, Zhao C, Chang Y, Bian Z and Zhao X: Impact of NR5A2 and RYR2 3'UTR polymorphisms on the risk of breast cancer in a Chinese Han population. Breast Cancer Res Treat. 183:1–8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cha EJ, Noh SJ, Kwon KS, Kim CY, Park BH, Park HS, Lee H, Chung MJ, Kang MJ, Lee DG, et al: Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res. 15:4453–4459. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bae JS, Park SH, Jamiyandorj U, Kim KM, Noh SJ, Kim JR, Park HJ, Kwon KS, Jung SH, Park HS, et al: CK2alpha/CSNK2A1 Phosphorylates SIRT6 and is involved in the progression of breast carcinoma and predicts shorter survival of diagnosed patients. Am J Pathol. 186:3297–3315. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G, Sun D, Rantala J, Barshop W, Hope JL, Gimple RC, et al: FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell. 184:352–369.e23. 2021. View Article : Google Scholar : | |
Mattei AL, Bailly N and Meissner A: DNA methylation: A historical perspective. Trends Genet. 38:676–707. 2022. View Article : Google Scholar : PubMed/NCBI | |
Papanicolau-Sengos A and Aldape K: DNA methylation profiling: An emerging paradigm for cancer diagnosis. Annu Rev Pathol. 17:295–321. 2022. View Article : Google Scholar | |
Johnson CH, Ivanisevic J and Siuzdak G: Metabolomics: Beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 17:451–459. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Chen L, Wan J, Liu W, Lou S and Shen Z: Single-cell transcriptomic landscape of immunometabolism reveals intervention candidates of ascorbate and aldarate metabolism, fatty-acid degradation and PUFA metabolism of T-cell subsets in healthy controls, psoriasis and psoriatic arthritis. Front Immunol. 14:11798772023. View Article : Google Scholar : PubMed/NCBI | |
Kwon J and Bakhoum SF: The cytosolic DNA-Sensing cGAS-STING pathway in cancer. Cancer Discov. 10:26–39. 2020. View Article : Google Scholar : | |
Vandereyken K, Sifrim A, Thienpont B and Voet T: Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 24:494–515. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhao Y, Kong P, Liu Y, Huang J, Xu E, Wei W, Li G, Cheng X, Xue L, et al: Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell. 41:181–195.e9. 2023. View Article : Google Scholar | |
Vasaikar SV, Straub P, Wang J and Zhang B: LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 46:D956–D963. 2018. View Article : Google Scholar : | |
Xu Y, She Y, Li Y, Li H, Jia Z, Jiang G, Liang L and Duan L: Multi-omics analysis at epigenomics and transcriptomics levels reveals prognostic subtypes of lung squamous cell carcinoma. Biomed Pharmacother. 125:1098592020. View Article : Google Scholar : PubMed/NCBI | |
Feng D, Gao P, Henley N, Dubuissez M, Chen N, Laurin LP, Royal V, Pichette V and Gerarduzzi C: SMOC2 promotes an epithelial-mesenchymal transition and a pro-metastatic phenotype in epithelial cells of renal cell carcinoma origin. Cell Death Dis. 13:6392022. View Article : Google Scholar : PubMed/NCBI | |
Mullen J, Kato S, Sicklick JK and Kurzrock R: Targeting ARID1A mutations in cancer. Cancer Treat Rev. 100:1022872021. View Article : Google Scholar : PubMed/NCBI | |
Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H, Schrader KA, Schaeffer DF, Shumansky K, Zogopoulos G, et al: Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 1:23–32. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cochran BJ, Ong KL, Manandhar B and Rye KA: APOA1: A protein with multiple therapeutic functions. Curr Atheroscler Rep. 23:112021. View Article : Google Scholar : PubMed/NCBI | |
Chia NY and Tan P: Molecular classification of gastric cancer. Ann Oncol. 27:763–769. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nakayama I, Qi C, Chen Y, Nakamura Y, Shen L and Shitara K: Claudin 18.2 as a novel therapeutic target. Nat Rev Clin Oncol. 21:354–369. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Lordick F, Bang YJ, Enzinger P, Ilson D, Shah MA, Van Cutsem E, Xu RH, Aprile G, Xu J, et al: Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet. 401:1655–1668. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shah MA, Shitara K, Ajani JA, Bang YJ, Enzinger P, Ilson D, Lordick F, Van Cutsem E, Gallego Plazas J, Huang J, et al: Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat Med. 29:2133–2141. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sahin U, Tureci O, Manikhas G, Lordick F, Rusyn A, Vynnychenko I, Dudov A, Bazin I, Bondarenko I, Melichar B, et al: FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol. 32:609–619. 2021. View Article : Google Scholar : PubMed/NCBI | |
Klempner SJ, Lee KW, Shitara K, Metges JP, Lonardi S, Ilson DH, Fazio N, Kim TY, Bai LY, Moran D, et al: ILUSTRO: Phase II multicohort trial of zolbetuximab in patients with advanced or metastatic claudin 18.2-Positive gastric or gastroesophageal junction adenocarcinoma. Clin Cancer Res. 29:3882–3891. 2023. View Article : Google Scholar : PubMed/NCBI | |
Joshi SS and Badgwell BD: Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 71:264–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH, Noh SI, Cho JY, et al: Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): A phase 3 open-label, randomised controlled trial. Lancet. 379:315–321. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Vita F, Giuliani F, Galizia G, Belli C, Aurilio G, Santabarbara G, Ciardiello F, Catalano G and Orditura M: Neo-adjuvant and adjuvant chemotherapy of gastric cancer. Ann Oncol. 18(Suppl 6): vi120–vi123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB and Danenberg PV: Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 6:1322–1327. 2000.PubMed/NCBI | |
White C, Scott RJ, Paul C, Ziolkowski A, Mossman D, Fox SB, Michael M and Ackland S: Dihydropyrimidine dehydrogenase deficiency and implementation of upfront DPYD genotyping. Clin Pharmacol Ther. 112:791–802. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Li E, Shen G, Dong Q, Ren D, Wang M, Zhao Y, Liu Z, Ma J, Xie Q, et al: Correlation between mismatch repair and survival of patients with gastric cancer after 5-FU-based adjuvant chemotherapy. J Gastroenterol. 58:622–632. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hoppe MM, Sundar R, Tan DSP and Jeyasekharan AD: Biomarkers for homologous recombination deficiency in cancer. J Natl Cancer Inst. 110:704–713. 2018. View Article : Google Scholar : PubMed/NCBI | |
Golan T, O'Kane GM, Denroche RE, Raitses-Gurevich M, Grant RC, Holter S, Wang Y, Zhang A, Jang GH, Stossel C, et al: Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology. 160:2119–2132.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodler E, Sharma P, Barlow WE, Gralow JR, Puhalla SL, Anders CK, Goldstein L, Tripathy D, Brown-Glaberman UA, Huynh TT, et al: Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 24:162–174. 2023. View Article : Google Scholar : PubMed/NCBI | |
Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, Szallasi Z, Barry WT, Winer EP, Tung NM, et al: Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with Triple-Negative breast cancer. Clin Cancer Res. 22:3764–3773. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Hu Y, Tang C, Guan X and Zhang W: Platinum-based systematic therapy in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer. 1877:1886782022. View Article : Google Scholar : PubMed/NCBI | |
Ott K, Vogelsang H, Mueller J, Becker K, Müller M, Fink U, Siewert JR, Höfler H and Keller G: Chromosomal instability rather than p53 mutation is associated with response to neoadjuvant cisplatin-based chemotherapy in gastric carcinoma. Clin Cancer Res. 9:2307–2315. 2003.PubMed/NCBI | |
Kumar S, Nandi A, Singh S, Regulapati R, Li N, Tobias JW, Siebel CW, Blanco MA, Klein-Szanto AJ, Lengner C, et al: Dll1(+) quiescent tumor stem cells drive chemoresistance in breast cancer through NF-kappaB survival pathway. Nat Commun. 12:4322021. View Article : Google Scholar | |
Kuo WY, Hwu L, Wu CY, Lee JS, Chang CW and Liu RS: STAT3/NF-κB-regulated lentiviral TK/GCV suicide gene therapy for cisplatin-resistant triple-negative breast cancer. Theranostics. 7:647–663. 2017. View Article : Google Scholar : | |
Liu W, Wang Z, Liu S, Zhang X, Cao X and Jiang M: RNF138 inhibits late inflammatory gene transcription through degradation of SMARCC1 of the SWI/SNF complex. Cell Rep. 42:1120972023. View Article : Google Scholar : PubMed/NCBI | |
Mittal P and Roberts CWM: The SWI/SNF complex in cancer-biology, biomarkers and therapy. Nat Rev Clin Oncol. 17:435–448. 2020. View Article : Google Scholar : PubMed/NCBI | |
Botta GP, Kato S, Patel H, Fanta P, Lee S, Okamura R and Kurzrock R: SWI/SNF complex alterations as a biomarker of immunotherapy efficacy in pancreatic cancer. JCI Insight. 6:e1504532021. View Article : Google Scholar : PubMed/NCBI | |
Gluckstein MI, Dintner S, Arndt TT, Vlasenko D, Schenkirsch G, Agaimy A, Müller G, Märkl B and Grosser B: Comprehensive immunohistochemical study of the SWI/SNF complex expression status in gastric cancer reveals an adverse prognosis of SWI/SNF deficiency in genomically stable gastric carcinomas. Cancers (Basel). 13:38942021. View Article : Google Scholar : PubMed/NCBI | |
Iwagami Y, Eguchi H, Nagano H, Akita H, Hama N, Wada H, Kawamoto K, Kobayashi S, Tomokuni A, Tomimaru Y, et al: miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br J Cancer. 109:502–511. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P and Li Y: Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer. 19:6182019. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Chen J, Xu Z Yang B, He Q, Luo P, Yan H and Yang X: Development and safety of PI3K inhibitors in cancer. Arch Toxicol. 97:635–650. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar | |
Pereira MA, Dias AR, Ramos MFKP, Cardili L, Moraes RDR, Zilberstein B, Nahas SC, Mello ES and Ribeiro U Jr: Gastric cancer with microsatellite instability displays increased thymidylate synthase expression. J Surg Oncol. 126:116–124. 2022. View Article : Google Scholar : PubMed/NCBI | |
Puliga E, Corso S, Pietrantonio F and Giordano S: Microsatellite instability in gastric cancer: Between lights and shadows. Cancer Treat Rev. 95:1021752021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Choi MG, Kim K, Kim KM, Kim ST, Park SH, Cristescu R, Peter S and Lee J: High PD-L1 expression in gastric cancer (GC) patients and correlation with molecular features. Pathol Res Pract. 216:1528812020. View Article : Google Scholar : PubMed/NCBI | |
Kim TS, da Silva E, Coit DG and Tang LH: Intratumoral immune response to gastric cancer varies by molecular and histologic subtype. Am J Surg Pathol. 43:851–860. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Xie T, Wang Z, Tong S, Zhao X, Zhao F, Cai J, Wei X, Peng Z and Shen L: Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. J Immunother Cancer. 10:e0040802022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang X, Xu Y, Li J, Zhang X, Peng Z, Hu Y, Zhao X, Dong K, Zhang B, et al: Mutations of PI3K-AKT-mTOR pathway as predictors for immune cell infiltration and immunotherapy efficacy in dMMR/MSI-H gastric adenocarcinoma. BMC Med. 20:1332022. View Article : Google Scholar : PubMed/NCBI | |
Panda A, Mehnert JM, Hirshfield KM, Riedlinger G, Damare S, Saunders T, Kane M, Sokol L, Stein MN, Poplin E, et al: Immune activation and benefit from avelumab in EBV-positive gastric cancer. J Natl Cancer Inst. 110:316–320. 2018. View Article : Google Scholar | |
Saito M and Kono K: Landscape of EBV-positive gastric cancer. Gastric Cancer. 24:983–989. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheong JE and Sun L: Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy-challenges and opportunities. Trends Pharmacol Sci. 39:307–325. 2018. View Article : Google Scholar | |
Niu F, Yu Y, Li Z, Ren Y, Li Z, Ye Q, Liu P, Ji C, Qian L and Xiong Y: Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed Pharmacother. 149:1128402022. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa H, Nagahashi M, Shimada Y, Hanyu T, Ishikawa T, Kameyama H, Kobayashi T, Sakata J, Yabusaki H, Nakagawa S, et al: Actionable gene-based classification toward precision medicine in gastric cancer. Genome Med. 9:932017. View Article : Google Scholar : PubMed/NCBI |