Emerging roles of angiopoietin‑like 4 in human tumors (Review)
- Authors:
- Ruyi Liu
- Miaomiao Fu
- Pengxiang Chen
- Yuchen Liu
- Weicheng Huang
- Xing Sun
- Pengfei Zhu
- Zhihua Wen
- Yufeng Cheng
-
Affiliations: Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China - Published online on: December 19, 2024 https://doi.org/10.3892/ijo.2024.5715
- Article Number: 9
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gilbertson RJ: Mapping cancer origins. Cell. 145:25–29. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM and Felsher DW: The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. 2022. View Article : Google Scholar | |
Huang H, Bhat A, Woodnutt G and Lappe R: Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 10:575–585. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eklund L, Kangas J and Saharinen P: Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond). 131:87–103. 2017. View Article : Google Scholar | |
Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv XJ, Wu XL and Qian GS: Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 63:13–22. 2014. View Article : Google Scholar | |
Aryal B, Price NL, Suarez Y and Fernández-Hernando C: ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med. 25:723–734. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan MJ, Teo Z, Sng MK, Zhu P and Tan NS: Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 10:677–688. 2012. View Article : Google Scholar : PubMed/NCBI | |
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V and Fanale D: Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway. PPAR Res. 2017:81872352017. View Article : Google Scholar : PubMed/NCBI | |
Kersten S: Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 13:731–739. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sylvers-Davie KL and Davies BSJ: Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 321:E493–E508. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Song QY, Niu SX, Chen HJ, Petersen RB, Zhang Y and Huang K: Emerging roles of angiopoietin-like proteins in inflammation: Mechanisms and potential as pharmacological targets. J Cell Physiol. 237:98–117. 2022. View Article : Google Scholar | |
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G and Thorin-Trescases N: Angiopoietin-like proteins: Cardiovascular biology and therapeutic targeting for the prevention of cardiovascular diseases. Can J Cardiol. 39:1736–1756. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kersten S: Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. J Lipid Res. 62:1001502021. View Article : Google Scholar : PubMed/NCBI | |
Zuo Y, He Z, Chen Y and Dai L: Dual role of ANGPTL4 in inflammation. Inflamm Res. 72:1303–1313. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, Lee ZH and Koh GY: Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J. 346:603–610. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE and Spiegelman BM: Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 20:5343–5349. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B and Wahli W: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 275:28488–28493. 2000. View Article : Google Scholar : PubMed/NCBI | |
Górecka M, Krzemiński K, Buraczewska M, Kozacz A, Dąbrowski J and Ziemba AW: Effect of mountain ultra-marathon running on plasma angiopoietin-like protein 4 and lipid profile in healthy trained men. Eur J Appl Physiol. 120:117–125. 2020. View Article : Google Scholar : | |
Li L, Foo BJW, Kwok KW, Sakamoto N, Mukae H, Izumikawa K, Mandard S, Quenot JP, Lagrost L, The WK, et al: Antibody treatment against angiopoietin-like 4 reduces pulmonary edema and injury in secondary pneumococcal pneumonia. mBio. 10:e024692019. View Article : Google Scholar : PubMed/NCBI | |
Sodhi A, Ma T, Menon D, Deshpande M, Jee K, Dinabandhu A, Vancel J, Lu D and Montaner S: Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J Clin Invest. 129:4593–4608. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HF, Hesselink MK, Schrauwen P and Müller M: Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol. 29:969–974. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh AK, Aryal B, Chaube B, Rotllan N, Varela L, Horvath TL, Suárez Y and Fernández-Hernando C: Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis. Mol Metab. 11:59–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shu L, Wang C, Ding Z, Tang J, Zhu Y, Wu L, Wang Z, Zhang T, Wang T, Xu Y and Sun L: A novel regulated network mediated by downregulation HIF1A-AS2 lncRNA impairs placental angiogenesis by promoting ANGPTL4 expression in preeclampsia. Front Cell Dev Biol. 10:8370002022. View Article : Google Scholar : PubMed/NCBI | |
Spitler KM, Shetty SK, Cushing EM, Sylvers-Davie KL and Davies BSJ: Chronic high-fat feeding and prolonged fasting in liver-specific ANGPTL4 knockout mice. Am J Physiol Endocrinol Metab. 321:E464–E478. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alex S, Lichtenstein L, Dijk W, Mensink RP, Tan NS and Kersten S: ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochem Cell Biol. 141:383–391. 2014. View Article : Google Scholar | |
Kuo T, Chen TC, Yan S, Foo F, Ching C, McQueen A and Wang JC: Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin. J Lipid Res. 55:919–928. 2014. View Article : Google Scholar : PubMed/NCBI | |
Inoue T, Kohro T, Tanaka T, Kanki Y, Li G, Poh HM, Mimura I, Kobayashi M, Taguchi A, Maejima T, et al: Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements. Genome Biol. 15:R632014. View Article : Google Scholar : PubMed/NCBI | |
Kaddatz K, Adhikary T, Finkernagel F, Meissner W, Müller-Brüsselbach S and Müller R: Transcriptional profiling identifies functional interactions of TGF β and PPAR β/δ signaling: Synergistic induction of ANGPTL4 transcription. J Biol Chem. 285:29469–29479. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu C, Teng L, Lai Y, Yao X, Fang Y, Wang Z, Lin S, Zhang H, Li Q, Li Y, et al: Adipose-derived stem cells promote glycolysis and peritoneal metastasis via TGF-β1/SMAD3/ANGPTL4 axis in colorectal cancer. Cell Mol Life Sci. 81:1892024. View Article : Google Scholar | |
Gong X, Hou Z, Endsley MP, Gronseth EI, Rarick KR, Jorns JM, Yang Q, Du Z, Yan K, Bordas ML, et al: Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. NPJ Precis Oncol. 3:242019. View Article : Google Scholar | |
Ding S, Lin Z, Zhang X, Jia X, Li H, Fu Y, Wang X, Zhu G, Lu G, Xiao W and Gong W: Deficiency of angiopoietin-like 4 enhances CD8(+) T cell bioactivity via metabolic reprogramming for impairing tumour progression. Immunology. 170:28–46. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kolb R, Kluz P, Tan ZW, Borcherding N, Bormann N, Vishwakarma A, Balcziak L, Zhu P, Davies BS, Gourronc F, et al: Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 38:2351–2363. 2019. View Article : Google Scholar : | |
Avalle L, Raggi L, Monteleone E, Savino A, Viavattene D, Statello L, Camperi A, Stabile SA, Salemme V, De Marzo N, et al: STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts. Oncogene. 41:1456–1467. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li YK, Gao AB, Zeng T, Liu D, Zhang QF, Ran XM, Tang ZZ, Li Y, Liu J, Zhang T, et al: ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1. J Transl Med. 22:462024. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wu F, Zhu Y, Wu T, Cao T, Gao W, Liu M, Qian W, Feng G, Xi X and Hou S: ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int. 24:542024. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Gao J and Liu X: Deregulation of angiopoietin-like 4 slows ovarian cancer progression through vascular endothelial growth factor receptor 2 phosphorylation. Cancer Cell Int. 21:1712021. View Article : Google Scholar : PubMed/NCBI | |
Wen L, Zhang Y, Yang B, Han F, Ebadi AG and Toughani M: Knockdown of angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol (Noisy-le-grand). 66:117–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen JW, Luo YJ, Yang ZF, Wen LQ and Huang L: Knockdown of angiopoietin-like 4 inhibits the development of human gastric cancer. Oncol Rep. 39:1739–1746. 2018.PubMed/NCBI | |
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J and Yang Y: ANGPTL4 stabilizes bone morphogenetic protein 7 through deubiquitination and promotes HCC proliferation via the SMAD/MAPK pathway. DNA Cell Biol. 43:395–400. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J and Yang Y: Angiopoietin-related protein 4-Transcript 3 increases the proliferation, invasion, and migration of hepatocellular carcinoma cells and inhibits apoptosis. DNA Cell Biol. 43:175–184. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Chen S, Li Y, Hu T, Hu J, Wang C, Yang F, Yang X, Zhou F, Liu Z, et al: ANGPTL4, a direct target of hsa-miR-133a-3p, accelerates lung adenocarcinoma lipid metabolism, proliferation and invasion. Aging (Albany NY). 16:8348–8360. 2023. | |
Fang Y, Li X, Cheng H, Zhang L and Hao J: ANGPTL4 regulates lung adenocarcinoma pyroptosis and apoptosis via NLRP3\ASC\ Caspase 8 signaling pathway to promote resistance to gefitinib. J Oncol. 2022:36235702022. View Article : Google Scholar | |
Zhang T, Kastrenopoulou A, Larrouture Q, Athanasou NA and Knowles HJ: Angiopoietin-like 4 promotes osteosarcoma cell proliferation and migration and stimulates osteoclastogenesis. BMC Cancer. 18:5362018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wang Y, Sun R, Zhang Y, Fu Y, Zheng Z, Ji Z and Zhao D: ANGPTL4 promotes the proliferation of papillary thyroid cancer via AKT pathway. Onco Targets Ther. 13:2299–2309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Izraely S, Ben-Menachem S, Sagi-Assif O, Meshel T, Marzese DM, Ohe S, Zubrilov I, Pasmanik-Chor M, Hoon DSB and Witz IP: ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget. 8:75778–75796. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hsieh HY, Jou YC, Tung CL, Tsai YS, Wang YH, Chi CL, Lin RI, Hung SK, Chuang YM, Wu SF, et al: Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment. Oncogene. 37:673–686. 2018. View Article : Google Scholar | |
Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, Wang K and Zhou Y: RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 10:2072019. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Miao Y, Zheng X, Dong Y, Yang Q, Yang Q, Du S, Xu J, Zhou S and Yuan T: ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism. Cell Death Discov. 8:2252022. View Article : Google Scholar : PubMed/NCBI | |
Qian P, Li J, Zhang X, Li F, Bei S, Li H, Sun Q and Feng L: LMX1A inhibits C-Myc expression through ANGPTL4 to exert tumor suppressive role in gastric cancer. PLoS One. 14:e02216402019. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, De U, Tithi TI, Kleberg J, Nataraj A, Jolley E, Carelock ME, Davies BS, Zhang W and Kolb R: ANGPTL4 suppresses clear cell renal cell carcinoma via inhibition of lysosomal acid lipase. Cancer Res Commun. 4:2242–2254. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Fang Y, Chang L, Bian Y, Wang Y, Ding J, Wang Y, Zhang Y, Pu J and Wang K: STAT2-induced linc02231 promotes tumorigenesis and angiogenesis through modulation of hnRNPA1/ANGPTL4 in colorectal cancer. J Gene Med. 25:e35062023. View Article : Google Scholar : PubMed/NCBI | |
Hübers C, Abdul Pari AA, Grieshober D, Petkov M, Schmidt A, Messmer T, Heyer CM, Schölch S, Kapel SS, Gengenbacher N, et al: Primary tumor-derived systemic nANGPTL4 inhibits metastasis. J Exp Med. 220:e202025952023. View Article : Google Scholar | |
Niu Y, Bao L, Chen Y, Wang C, Luo M, Zhang B, Zhou M, Wang JE, Fang YV, Kumar A, et al: HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res. 80:964–975. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen CJ, Chang KY, Lin BW, Lin WT, Su CM, Tsai JP, Liao YH, Hung LY, Chang WC and Chen BK: Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Theranostics. 10:7083–7099. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen CJ, Chan RH, Lin BW, Li NC, Huang YH, Chang WC and Chen BK: Oleic acid-induced metastasis of KRAS/p53-mutant colorectal cancer relies on concurrent KRAS activation and IL-8 expression bypassing EGFR activation. Theranostics. 13:4650–4666. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bajwa P, Kordylewicz K, Bilecz A, Lastra RR, Wroblewski K, Rinkevich Y, Lengyel E and Kenny HA: Cancer-associated mesothelial cell-derived ANGPTL4 and STC1 promote the early steps of ovarian cancer metastasis. JCI Insight. 8:e1630192023. View Article : Google Scholar : PubMed/NCBI | |
Hefni E, Menon D, Ma T, Asiedu EB, Sultan A, Meiller T, Schneider A, Sodhi A and Montaner S: Angiopoietin-like 4 induces head and neck squamous cell carcinoma cell migration through the NRP1/ABL1/PXN pathway. Cell Signal. 108:1106972023. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Guo Z, Li Z, Li J, Jiang S, Fu J, Jiao Y, Deng X, Han S and Li P: Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4. Phytomedicine. 106:1544092022. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Cao S, Wang J, Li P, Cheng Q, Zhou X, Dong J, Li Y, Zhao X, Xu Z and Yang L: Leptin-mediated suppression of lipoprotein lipase cleavage enhances lipid uptake and facilitates lymph node metastasis in gastric cancer. Cancer Commun (Lond). 44:855–878. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chiang KH, Shieh JM, Shen CJ, Chang TW, Wu PT, Hsu JY, Tsai JP, Chang WC and Chen BK: Epidermal growth factor-induced COX-2 regulates metastasis of head and neck squamous cell carcinoma through upregulation of angiopoietin-like 4. Cancer Sci. 111:2004–2015. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai YC, Yang H, Wang KF, Chen TH, Jiang WQ and Shi YX: ANGPTL4 overexpression inhibits tumor cell adhesion and migration and predicts favorable prognosis of triple-negative breast cancer. BMC Cancer. 20:8782020. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Zhai Z, Yu S and Tao Y: DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway. J Cancer. 12:5473–5485. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Wang GJ, Huang P, Chen S, Xiao H, Zhang L and Zou H: Geiparvarin inhibits OS metastasis through upregulation of ANGPTL4 expression by inhibiting miRNA-3912-3p expression. Evid Based Complement Alternat Med. 2022:46636842022.PubMed/NCBI | |
Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T and Koizumi F: Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 12:312013. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Tan D, Xiong X, Liu J and Xu J: Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite. Proc Natl Acad Sci USA. 107:14026–14029. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Babapoor-Farrokhran S, Rodrigues M, Deshpande M, Puchner B, Kashiwabuchi F, Hassan SJ, Asnaghi L, Handa JT, Merbs S, et al: Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget. 7:7816–7828. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mo F, Xu Y and Zhang J, Zhu L, Wang C, Chu X, Pan Y, Bai Y, Shao C and Zhang J: Effects of hypoxia and radiation-induced exosomes on migration of lung cancer cells and angiogenesis of umbilical vein endothelial Cells. Radiat Res. 194:71–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Yang M and Chang S: LncRNA CCAL Promotes Angiogenesis Through Regulating the MiR-29b/ANGPTL4 Axis in Osteosarcoma. Cancer Manag Res. 12:10521–10530. 2020. View Article : Google Scholar : PubMed/NCBI | |
Okochi-Takada E, Hattori N, Tsukamoto T, Miyamoto K, Ando T, Ito S, Yamamura Y, Wakabayashi M, Nobeyama Y and Ushijima T: ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene. 33:2273–2278. 2014. View Article : Google Scholar | |
Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, Zhu W, Wu D and Xu A: Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol. 28:835–840. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ng KT, Xu A, Cheng Q, Guo DY, Lim ZX, Sun CK, Fung JH, Poon RT, Fan ST, Lo CM and Man K: Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol Cancer. 13:1962014. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Huang D, Shi Y, Liang Z and Bu H: Regulated cell death in cancer: From pathogenesis to treatment. Chin Med J (Engl). 136:653–665. 2023. View Article : Google Scholar | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moujalled D, Strasser A and Liddell JR: Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 28:2029–2044. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ding W, Wang J, Ao X and Xue J: Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother. 164:1149932023. View Article : Google Scholar : PubMed/NCBI | |
Kerr JF, Wyllie AH and Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
Nuñez G, Benedict MA, Hu Y and Inohara N: Caspases: the proteases of the apoptotic pathway. Oncogene. 17:3237–3245. 1998. View Article : Google Scholar | |
Saraste A and Pulkki K: Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 45:528–537. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lim MMK, Wee JWK, Soong JC, Chua D, Tan WR, Lizwan M, Li Y, Teo Z, Goh WWB, Zhu P and Tan NS: Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs. Mol Cancer. 17:1522018. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J and Yang Y: Effect of deletion of ANGPTL4 gene on viability, migration and invasion ability and apoptosis of hepatocellular carcinoma cells. Discov Med. 36:173–181. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen T, Shi Q, Li J, Cai S, Zhou P, Zhong Y and Yao L: Angiopoietin-like 4 enhances metastasis and inhibits apoptosis via inducing bone morphogenetic protein 7 in colorectal cancer cells. Biochem Biophys Res Commun. 467:128–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hsieh HY, Shen CH, Lin RI, Feng YM, Huang SY, Wang YH, Wu SF, Hsu CD and Chan MW: Cyproheptadine exhibits antitumor activity in urothelial carcinoma cells by targeting GSK3β to suppress mTOR and β-catenin signaling pathways. Cancer Lett. 370:56–65. 2016. View Article : Google Scholar | |
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F and Velaei K: Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int. 47:683–698. 2023. View Article : Google Scholar | |
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
Chaojun L, Pengping L, Yanjun L, Fangyuan Z, Yaning H, Yingbo S, Qi C and Hui L: TJP3 promotes T cell immunity escape and chemoresistance in breast cancer: A comprehensive analysis of anoikis-based prognosis prediction and drug sensitivity stratification. Aging (Albany NY). 15:12890–12906. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liao YH, Chiang KH, Shieh JM, Huang CR, Shen CJ, Huang WC and Chen BK: Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene. 36:2228–2242. 2017. View Article : Google Scholar : | |
Shen CJ, Chan SH, Lee CT, Huang WC, Tsai JP and Chen BK: Oleic acid-induced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via up-regulation of fibronectin. Cancer Lett. 386:110–122. 2017. View Article : Google Scholar | |
Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CR, Boukamp P, Pan JY, Tan SH, et al: Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 19:401–415. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baba K, Kitajima Y, Miyake S, Nakamura J, Wakiyama K, Sato H, Okuyama K, Kitagawa H, Tanaka T, Hiraki M, et al: Hypoxia-induced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines. Sci Rep. 7:111272017. View Article : Google Scholar : PubMed/NCBI | |
San TT, Khaenam P, Prachayasittikul V, Sripa B, Kunkeaw N and Chan-On W: Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells. Heliyon. 6:e032552020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Cao L, Li J, Liang X, Liu Y, Liu H, Du J, Qu Z, Cui M, Liu S, et al: Acquisition of anoikis resistance reveals a synoikis-like survival style in BEL7402 hepatoma cells. Cancer Lett. 267:106–115. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ness C, Garred Ø, Eide NA, Kumar T, Olstad OK, Bærland TP, Petrovski G, Moe MC and Noer A: Multicellular tumor spheroids of human uveal melanoma induce genes associated with anoikis resistance, lipogenesis, and SSXs. Mol Vis. 23:680–694. 2017.PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Agmon E, Solon J, Bassereau P and Stockwell BR: Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep. 8:51552018. View Article : Google Scholar : PubMed/NCBI | |
Tang D and Kroemer G: Ferroptosis. Curr Biol. 30:R1292–R1297. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : | |
Li D and Li Y: The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 5:1082020. View Article : Google Scholar : PubMed/NCBI | |
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu X, Zeng L, Zhao X, Chen Q, Pan Y, Bai Y, Shao C and Zhang J: Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer. 127:1760–1772. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang WH, Huang Z, Wu J, Ding CC, Murphy SK and Chi JT: A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol Cancer Res. 18:79–90. 2020. View Article : Google Scholar : | |
Broz P, Pelegrín P and Shao F: The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar | |
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI | |
Strowig T, Henao-Mejia J, Elinav E and Flavell R: Inflammasomes in health and disease. Nature. 481:278–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar | |
Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Xu W and Zhou R: NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 18:2114–2127. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sharma BR and Kanneganti TD: NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 22:550–559. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X and Zhao M: Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro. 94:1057092024. View Article : Google Scholar | |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaelin WG Jr and Thompson CB: Q&A: Cancer: Clues from cell metabolism. Nature. 465:562–564. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martínez-Reyes I and Chandel NS: Cancer metabolism: Looking forward. Nat Rev Cancer. 21:669–680. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Li B and Simon MC: Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell. 81:3760–3774. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fendt SM: 100 years of the Warburg effect: A cancer metabolism endeavor. Cell. 187:3824–3828. 2024. View Article : Google Scholar : PubMed/NCBI | |
Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86(Pt 3): 1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Liu R, Zhou C, Yu H, Luo W, Zhu J, Liu J, Zhang Z, Xie N, Peng X, et al: ANGPTL4-mediated promotion of glycolysis facilitates the colonization of fusobacterium nucleatum in colorectal cancer. Cancer Res. 81:6157–6170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mizuno S, Seishima R, Yamasaki J, Hattori K, Ogiri M, Matsui S, Shigeta K, Okabayashi K, Nagano O, Li L and Kitagawa Y: Angiopoietin-like 4 promotes glucose metabolism by regulating glucose transporter expression in colorectal cancer. J Cancer Res Clin Oncol. 148:1351–1361. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Chai YD and Hu S: Fatty acid metabolism and cancer. Adv Exp Med Biol. 1280:231–241. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, et al: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pham DV and Park PH: Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res. 41:92022. View Article : Google Scholar : PubMed/NCBI | |
Dijk W and Kersten S: Regulation of lipoprotein lipase by Angptl4. Trends Endocrinol Metab. 25:146–155. 2014. View Article : Google Scholar : PubMed/NCBI | |
Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, Müller M and Kersten S: Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress. Circ Res. 106:1712–1721. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang R and Zhang K: An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res. 85:1011402022. View Article : Google Scholar : | |
Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Köster A, Tamsma JT, et al: Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 12:580–592. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xiao S, Nai-Dong W, Jin-Xiang Y, Long T, Xiu-Rong L, Hong G, Jie-Cheng Y and Fei Z: ANGPTL4 regulate glutamine metabolism and fatty acid oxidation in nonsmall cell lung cancer cells. J Cell Mol Med. 26:1876–1885. 2022. View Article : Google Scholar : PubMed/NCBI | |
Blücher C, Iberl S, Schwagarus N, Müller S, Liebisch G, Höring M, Hidrobo MS, Ecker J, Spindler N, Dietrich A, et al: Secreted factors from adipose tissue reprogram tumor lipid metabolism and induce motility by modulating PPARα/ANGPTL4 and FAK. Mol Cancer Res. 18:1849–1862. 2020. View Article : Google Scholar | |
Cai Z, Li Y, Ma M, Wang L, Wang H, Liu M and Jiang C: Adipocytes promote pancreatic cancer migration and invasion through fatty acid metabolic reprogramming. Oncol Rep. 50:1412023. View Article : Google Scholar : PubMed/NCBI | |
Lieu EL, Nguyen T, Rhyne S and Kim J: Amino acids in cancer. Exp Mol Med. 52:15–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lippert TH, Ruoff HJ and Volm M: Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 58:261–264. 2008.PubMed/NCBI | |
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA and Núñez MI: CSC Radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 9:16512020. View Article : Google Scholar : PubMed/NCBI | |
Fekir K, Dubois-Pot-Schneider H, Désert R, Daniel Y, Glaise D, Rauch C, Morel F, Fromenty B, Musso O, Cabillic F and Corlu A: Retrodifferentiation of Human Tumor Hepatocytes to Stem Cells Leads to Metabolic Reprogramming and Chemoresistance. Cancer Res. 79:1869–1883. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li C, Wang Q, Luo Y and Xiang J: TAZ regulates the cisplatin resistance of epithelial ovarian cancer cells via the ANGPTL4/SOX2 axis. Anal Cell Pathol (Amst). 2022:56321642022.PubMed/NCBI | |
Zhou S, Wang R and Xiao H: Adipocytes induce the resistance of ovarian cancer to carboplatin through ANGPTL4. Oncol Rep. 44:927–938. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsai YT, Wu AC, Yang WB, Kao TJ, Chuang JY, Chang WC and Hsu TI: ANGPTL4 induces TMZ resistance of glioblastoma by promoting cancer stemness enrichment via the EGFR/AKT/4E-BP1 cascade. Int J Mol Sci. 20:56252019. View Article : Google Scholar : PubMed/NCBI | |
Gordon ER, Wright CA, James M and Cooper SJ: Transcriptomic and functional analysis of ANGPTL4 overexpression in pancreatic cancer nominates targets that reverse chemoresistance. BMC Cancer. 23:5242023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, Tian H, Zhu M, Chen T, Jiang G, et al: Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin β1 signaling in human hepatocellular carcinoma. Hepatology. 54:910–919. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, Finkernagel F, Obert J, Lieber S, Scharfe M, et al: Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene. 32:5241–5252. 2013. View Article : Google Scholar | |
Tian L, Zhou J, Casimiro MC, Liang B, Ojeifo JO, Wang M, Hyslop T, Wang C and Pestell RG: Activating peroxisome proliferator-activated receptor gamma mutant promotes tumor growth in vivo by enhancing angiogenesis. Cancer Res. 69:9236–9244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Park YY, Kim SW, Lee JS, Wang D and DuBois RN: ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res. 71:7010–7020. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Tu J, Ding S, Lu G, Lin Z, Ding Y, Deng B, Zhang Y, Xiao W and Gong W: High expression of angiopoietin-like protein 4 in advanced colorectal cancer and its association with regulatory T Cells and M2 macrophages. Pathol Oncol Res. 26:1269–1278. 2020. View Article : Google Scholar | |
Long F, Wang W, Li S, Wang B, Hu X, Wang J, Xu Y, Liu M, Zhou J, Si H, et al: The potential crosstalk between tumor and plasma cells and its association with clinical outcome and immunotherapy response in bladder cancer. J Transl Med. 21:2982023. View Article : Google Scholar : PubMed/NCBI | |
Li F and Ding J: Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell. 10:550–565. 2019. View Article : Google Scholar : | |
Ma X, Li M, Wang X, Qi G, Wei L and Zhang D: Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym. 343:1224712024. View Article : Google Scholar : PubMed/NCBI | |
Calabrese V, Zirino F, Vienna FG, Siligato R, Cernaro V and Santoro D: Insight into the role of angiopoietin-like protein 4 in podocypopathies (Review). World Acad Sci J. 6:292024. View Article : Google Scholar | |
Chugh SS and Clement LC: 'Idiopathic' minimal change nephrotic syndrome: A podocyte mystery nears the end. Am J Physiol Renal Physiol. 325:F685–F694. 2023. View Article : Google Scholar | |
Smith BAH, Deutzmann A, Correa KM, Delaveris CS, Dhanasekaran R, Dove CG, Sullivan DK, Wisnovsky S, Stark JC, Pluvinage JV, et al: MYC-driven synthesis of siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci USA. 120:e22153761202023. View Article : Google Scholar : PubMed/NCBI | |
Stanczak MA and Läubli H: Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med. 90:1011122023. View Article : Google Scholar | |
Zhao J, Liu J, Wu N, Zhang H, Zhang S, Li L and Wang M: ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol Lett. 20:2499–2505. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nie D, Zheng Q, Liu L, Mao X and Li Z: Up-regulated of angiopoietin-like protein 4 predicts poor prognosis in cervical cancer. J Cancer. 10:1896–1901. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aung TM, Ciin MN, Silsirivanit A, Jusakul A, Lert-Itthiporn W, Proungvitaya T, Roytrakul S and Proungvitaya S: Serum angiopoietin-like protein 4: A potential prognostic biomarker for prediction of vascular invasion and lymph node metastasis in cholangiocarcinoma patients. Front Public Health. 10:8369852022. View Article : Google Scholar : PubMed/NCBI | |
Wang FT, Li XP, Pan MS, Hassan M, Sun W and Fan YZ: Identification of the prognostic value of elevated ANGPTL4 expression in gallbladder cancer-associated fibroblasts. Cancer Med. 10:6035–6047. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shibata K, Nakayama T, Hirakawa H, Hidaka S and Nagayasu T: Clinicopathological significance of angiopoietin-like protein 4 expression in oesophageal squamous cell carcinoma. J Clin Pathol. 63:1054–1058. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Imamura T, Irie A, Yoneda M, Imamura R, Kikuchi K, Kitagawa S, Kubo T, Ogi H and Nakayama H: Association of high cellular expression and plasma concentration of angiopoietin-like 4 with tongue cancer lung metastasis and poor prognosis. Oncol Lett. 24:2992022. View Article : Google Scholar : PubMed/NCBI | |
Dong D, Jia L, Zhou Y, Ren L, Li J and Zhang J: Serum level of ANGPTL4 as a potential biomarker in renal cell carcinoma. Urol Oncol. 35:279–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kubo H, Kitajima Y, Kai K, Nakamura J, Miyake S, Yanagihara K, Morito K, Tanaka T, Shida M and Noshiro H: Regulation and clinical significance of the hypoxia-induced expression of ANGPTL4 in gastric cancer. Oncol Lett. 11:1026–1034. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sukonina V, Lookene A, Olivecrona T and Olivecrona G: Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA. 103:17450–17455. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadouen A, Jørgensen TJ, Olivecrona G, Young SG and Ploug M: The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. Elife. 5:e209582016. View Article : Google Scholar : PubMed/NCBI | |
Yoshida K, Shimizugawa T, Ono M and Furukawa H: Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res. 43:1770–1772. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG and Kersten S: Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res. 57:1670–1683. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reimund M, Kovrov O, Olivecrona G and Lookene A: Lipoprotein lipase activity and interactions studied in human plasma by isothermal titration calorimetry. J Lipid Res. 58:279–288. 2017. View Article : Google Scholar : | |
Kersten S: New insights into angiopoietin-like proteins in lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol. 30:205–211. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK, Lam CR, Sng MK, Leong DT, Tan SM, et al: ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 118:3990–4002. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cazes A, Galaup A, Chomel C, Bignon M, Bréchot N, Le Jan S, Weber H, Corvol P, Muller L, Germain S and Monnot C: Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res. 99:1207–1215. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sheridan C: Amgen's angiopoietin blocker fails in ovarian cancer. Nat Biotechnol. 33:5–6. 2015. View Article : Google Scholar : PubMed/NCBI | |
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
Simeon J, Thrush J and Bailey TA: Angiopoietin-like protein 4 is a chromatin-bound protein that enhances mammosphere formation in vitro and experimental triple-negative breast cancer brain and liver metastases in vivo. J Carcinog. 20:82021. View Article : Google Scholar : PubMed/NCBI | |
Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T and Taguchi T: Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep. 25:929–935. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Pan BZ, Xiong L and Song HZ: Clinical significance of angiopoietin-like protein 4 expression in tissue and serum of esophageal squamous cell carcinoma patients. Med Oncol. 30:6802013. View Article : Google Scholar : PubMed/NCBI | |
Nakayama T, Hirakawa H, Shibata K, Abe K, Nagayasu T and Taguchi T: Expression of angiopoietin-like 4 in human gastric cancer: ANGPTL4 promotes venous invasion. Oncol Rep. 24:599–606. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma T, Jham BC, Hu J, Friedman ER, Basile JR, Molinolo A, Sodhi A and Montaner S: Viral G protein-coupled receptor up-regulates Angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi's sarcoma. Proc Natl Acad Sci USA. 107:14363–14368. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Khoury E, Guo Q, Prabhu SA, Emond A, Huang F, Gonçalves C, Zhan Y, Plourde D, Nichol JN, et al: MNK1 signaling induces an ANGPTL4-mediated gene signature to drive melanoma progression. Oncogene. 39:3650–3665. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Guo X, Wu S and Wei L: ANGPTL4 correlates with NSCLC progression and regulates epithelial-mesenchymal transition via ERK pathway. Lung. 194:637–646. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lou H, Lin X, Wei G, Wu Z and Xiao Y: Construction of an Anoikis-related gene prognostic signature and identification of ANGPTL4 as a key oncogene in lung adenocarcinoma. Mol Biotechnol. 66:1290–1302. 2024. View Article : Google Scholar : PubMed/NCBI | |
Al-Kadash A, Alshaer W, Mahmoud IS, Wehaibi S and Zihlif M: Enhancing chemosensitivity of PANC1 pancreatic cancer cells to gemcitabine using ANGTPL4, Notch1 and NF-κβ1 siRNAs. Future Sci OA. 10:FSO9182024. View Article : Google Scholar | |
Hata S, Nomura T, Iwasaki K, Sato R, Yamasaki M, Sato F and Mimata H: Hypoxia-induced angiopoietin-like protein 4 as a clinical biomarker and treatment target for human prostate cancer. Oncol Rep. 38:120–128. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Imamura T, Yoneda M, Irie A, Ogi H, Nagata M, Yoshida R, Fukuma D, Kawahara K, Shinohara M and Nakayama H: Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α-TNFR1-NF-κB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis. Int J Oncol. 49:1377–1384. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Zhang M, Liu J, Xu B, Yang J, Wang N, Yan S, Wang F, He X, Ji G, et al: Long Non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in cholangiocarcinoma. Mol Ther Nucleic Acids. 13:503–513. 2018. View Article : Google Scholar : PubMed/NCBI |