1
|
Xi Y and Xu P: Global colorectal cancer
burden in 2020 and projections to 2040. Transl Oncol.
14:1011742021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Qu R, Ma Y, Zhang Z and Fu W: Increasing
burden of colorectal cancer in China. Lancet Gastroenterol Hepatol.
7:7002022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kristensen LS, Jakobsen T, Hager H and
Kjems J: The emerging roles of circRNAs in cancer and oncology. Nat
Rev Clin Oncol. 19:188–206. 2022. View Article : Google Scholar
|
5
|
Yuan G, Ding W, Sun B, Zhu L, Gao Y and
Chen L: Upregulated circRNA_102231 promotes gastric cancer
progression and its clinical significance. Bioengineered.
12:4936–4945. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li R, Tian X, Jiang J, Qian H, Shen H and
Xu W: CircRNA CDR1as: A novel diagnostic and prognostic biomarker
for gastric cancer. Biomarkers. 28:448–457. 2023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li X, Azhati B, Wang W, Rexiati M, Xing C
and Wang Y: Circular RNA UBAP2 promotes the proliferation of
prostate cancer cells via the miR-1244/MAP3K2 axis. Oncol Lett.
21:4862021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ma W, Zhao X, Gao Y, Yao X, Zhang J and Xu
Q: Circular RNA circ_UBAP2 facilitates the progression of
osteosarcoma by regulating microRNA miR-637/high-mobility group box
(HMGB) 2 axis. Bioengineered. 13:4411–4427. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang PF, Wei CY, Huang XY, Peng R, Yang
X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, et al: Circular RNA
circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress
hepatocellular carcinoma progression. Mol Cancer. 18:1052019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun J, Yin A, Zhang W, Lv J, Liang Y, Li
H, Li Y and Li X: CircUBAP2 inhibits proliferation and metastasis
of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2
pathway. Cell Transplant. 29:9636897209257512020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou C, Lyu LH, Miao HK, Bahr T, Zhang QY,
Liang T, Zhou HB, Chen GR and Bai Y: Redox regulation by SOD2
modulates colorectal cancer tumorigenesis through AMPK-mediated
energy metabolism. Mol Carcinog. 59:545–556. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
13
|
Bertrand E, Chartrand P, Schaefer M,
Shenoy SM, Singer RH and Long RM: Localization of ASH1 mRNA
particles in living yeast. Mol Cell. 2:437–445. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou M, Yang Z, Wang D, Chen P and Zhang
Y: The circular RNA circZFR phosphorylates Rb promoting cervical
cancer progression by regulating the SSBP1/CDK2/cyclin E1 complex.
J Exp Clin Cancer Res. 40:482021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zheng R, Zhang K, Tan S, Gao F, Zhang Y,
Xu W, Wang H, Gu D, Zhu L, Li S, et al: Exosomal circLPAR1
functions in colorectal cancer diagnosis and tumorigenesis through
suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer.
21:492022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen X, Han P, Zhou T, Guo X, Song X and
Li Y: circRNADb: A comprehensive database for human circular RNAs
with protein-coding annotations. Sci Rep. 6:349852016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao Q, Liu J, Deng H, Ma R, Liao JY,
Liang H, Hu J, Li J, Guo Z, Cai J, et al: Targeting
mitochondria-located circRNA SCAR alleviates NASH via reducing mROS
output. Cell. 183:76–93.e22. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo
X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein
AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin
signaling pathway to promote gastric cancer progression. Mol
Cancer. 20:1582021. View Article : Google Scholar
|
19
|
Lyu LH, Zhang CY, Yang WJ, Jin AL, Zhu J,
Wang H, Liu T, Wang BL, Cheng JW, Yang XR and Guo W:
Hsa_circ_0003945 promotes progression of hepatocellular carcinoma
by mediating miR-34c-5p/LGR4/β-catenin axis activity. J Cell Mol
Med. 26:2218–2229. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang M, Sun M and Zhang H: The interaction
between epigenetic changes, EMT, and exosomes in predicting
metastasis of colorectal cancers (CRC). Front Oncol. 12:8798482022.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Vu T and Datta PK: Regulation of EMT in
colorectal cancer: A culprit in metastasis. Cancers (Basel).
9:1712017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang L, Long H, Zheng Q, Bo X, Xiao X and
Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma
progression by initiation of NR2F6 expression. Mol Cancer.
18:1192019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma Q, Yang F, Huang B, Pan X, Li W, Yu T,
Wang X, Ran L, Qian K, Li H, et al: CircARID1A binds to IGF2BP3 in
gastric cancer and promotes cancer proliferation by forming a
circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex. J Exp Clin
Cancer Res. 41:2512022. View Article : Google Scholar : PubMed/NCBI
|
24
|
He Y, Luo Y, Zhang D, Wang X, Zhang P, Li
H, Ejaz S and Liang S: PGK1-mediated cancer progression and drug
resistance. Am J Cancer Res. 9:2280–2302. 2019.PubMed/NCBI
|
25
|
Fu Q and Yu Z: Phosphoglycerate kinase 1
(PGK1) in cancer: A promising target for diagnosis and therapy.
Life Sci. 256:1178632020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen Y, Ouyang Y, Li Z, Wang X and Ma J:
S100A8 and S100A9 in cancer. Biochim Biophys Acta Rev Cancer.
1878:1888912023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Markowitz J and Carson WE III: Review of
S100A9 biology and its role in cancer. Biochim Biophys Acta.
1835:100–109. 2013.
|
28
|
Qiao L, Xie N, Li Y, Bai Y, Liu N and Wang
J: Downregulation of HNRNPM inhibits cell proliferation and
migration of hepatocellular carcinoma through MAPK/AKT signaling
pathway. Transl Cancer Res. 11:2135–2144. 2022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang X, Li J, Bian X, Wu C, Hua J, Chang
S, Yu T, Li H, Li Y, Hu S, et al: CircURI1 interacts with hnRNPM to
inhibit metastasis by modulating alternative splicing in gastric
cancer. Proc Natl Acad Sci USA. 118:e20128811182021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ho JS, Di Tullio F, Schwarz M, Low D,
Incarnato D, Gay F, Tabaglio T, Zhang J, Wollmann H, Chen L, et al:
HNRNPM controls circRNA biogenesis and splicing fidelity to sustain
cancer cell fitness. Elife. 10:e596542021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sarraf JS, Puty TC, da Silva EM, Allen
TSR, Sarraf YS, de Carvalho LEW, Adami F and de Oliveira EHC:
Noncoding RNAs and colorectal cancer: A general overview. Microrna.
9:336–345. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Z, Liu X, Li Y, Ren P, Zhang C, Wang
L, Du X and Xing B: miR-6716-5p promotes metastasis of colorectal
cancer through downregulating NAT10 expression. Cancer Manag Res.
11:5317–5332. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mao J and Lu Y: Roles of circRNAs in the
progression of colorectal cancer: Novel strategies for detection
and therapy. Cancer Gene Ther. 31:831–841. 2024. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang Y, Luo J, Yang W and Ye WC: CircRNAs
in colorectal cancer: Potential biomarkers and therapeutic targets.
Cell Death Dis. 14:3532023. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fang G, Xu D, Zhang T, Wang G, Qiu L, Gao
X and Miao Y: Biological functions, mechanisms, and clinical
significance of circular RNA in colorectal cancer. Front Oncol.
13:11384812023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang L, Yang X, Zhou F, Sun X and Li S:
Circular RNA UBAP2 facilitates the cisplatin resistance of
triple-negative breast cancer via microRNA-300/anti-silencing
function 1B histone chaperone/PI3K/AKT/mTOR axis. Bioengineered.
13:7197–7208. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li Y, Chen B, Zhao J, Li Q, Chen S, Guo T,
Li Y, Lai H, Chen Z, Meng Z, et al: HNRNPL circularizes ARHGAP35 to
produce an oncogenic protein. Adv Sci (Weinh). 8:20017012021.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Xie W, Jiang L, Huang X, You W and Sun W:
Hsa_circ_0004662 accelerates the progression of osteoarthritis via
the microRNA-424-5p/VEGFA axis. Curr Mol Med. 24:217–225. 2024.
View Article : Google Scholar
|
39
|
Zhao Z, Song J, Tang B, Fang S, Zhang D,
Zheng L, Wu F, Gao Y, Chen C, Hu X, et al: CircSOD2 induced
epigenetic alteration drives hepatocellular carcinoma progression
through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer
Res. 39:2592020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yao GS, Fu LM, Dai JS, Chen JW, Liu KZ,
Liang H, Wang Z, Deng Q, Wang JY, Jin MY, et al: Exploring the
oncogenic potential of circSOD2 in clear cell renal cell carcinoma:
A novel positive feedback loop. J Transl Med. 22:5962024.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Lv C, Hu Y, Zhou X, Zhu Y, Wang J and Zhou
F: CircRNA SOD2 motivates non-small cell lungs cancer advancement
with EMT via acting as microRNA-2355-5p's competing endogenous RNA
to mediate calmodulin regulated spectrin associated proteins-2.
Bioengineered. 13:5756–5768. 2022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang Y, Wu C, Du Y, Li Z, Li M, Hou P,
Shen Z, Chu S, Zheng J and Bai J: Expanding uncapped translation
and emerging function of circular RNA in carcinomas and
noncarcinomas. Mol Cancer. 21:132022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang L, Gao H, Li X, Yu F and Li P: The
important regulatory roles of circRNA-encoded proteins or peptides
in cancer pathogenesis (Review). Int J Oncol. 64:192024. View Article : Google Scholar :
|
44
|
Tang X, Deng Z, Ding P, Qiang W, Lu Y, Gao
S, Hu Y, Yang Y, Du J and Gu C: A novel protein encoded by
circHNRNPU promotes multiple myeloma progression by regulating the
bone marrow microenvironment and alternative splicing. J Exp Clin
Cancer Res. 41:852022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xiong L, Liu HS, Zhou C, Yang X, Huang L,
Jie HQ, Zeng ZW, Zheng XB, Li WX, Liu ZZ, et al: A novel protein
encoded by circINSIG1 reprograms cholesterol metabolism by
promoting the ubiquitin-dependent degradation of INSIG1 in
colorectal cancer. Mol Cancer. 22:722023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang B, Wang YW and Zhang K: Interactions
between circRNA and protein in breast cancer. Gene. 895:1480192024.
View Article : Google Scholar
|
47
|
Huang A, Zheng H, Wu Z, Chen M and Huang
Y: Circular RNA-protein interactions: Functions, mechanisms, and
identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhu GQ, Wang Y, Wang B, Liu WR, Dong SS,
Chen EB, Cai JL, Wan JL, Du JX, Song LN, et al: Targeting HNRNPM
inhibits cancer stemness and enhances antitumor immunity in
Wnt-activated hepatocellular carcinoma. Cell Mol Gastroenterol
Hepatol. 13:1413–1447. 2022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Yang WH, Ding MJ, Cui GZ, Yang M and Dai
DL: Heterogeneous nuclear ribonucleoprotein M promotes the
progression of breast cancer by regulating the axin/β-catenin
signaling pathway. Biomed Pharmacother. 105:848–855. 2018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Sun H, Liu T, Zhu D, Dong X, Liu F, Liang
X, Chen C, Shao B, Wang M and Wang Y: HnRNPM and CD44s expression
affects tumor aggressiveness and predicts poor prognosis in breast
cancer with axillary lymph node metastases. Genes Chromosomes
Cancer. 56:598–607. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D
and Wei F: CDR1as regulated by hnRNPM maintains stemness of
periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med.
25:4501–4515. 2021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shou Y, Yue C, Wang Q, Liu J, Xu J, Miao
Q, Liu D, Yang H, Liu Y and Zhang X: circPTPN12 promotes the
progression and sunitinib resistance of renal cancer via
hnRNPM/IL-6/STAT3 pathway. Cell Death Dis. 14:2322023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Chen TM, Lai MC, Li YH, Chan YL, Wu CH,
Wang YM, Chien CW, Huang SY, Sun HS and Tsai SJ: hnRNPM induces
translation switch under hypoxia to promote colon cancer
development. EBioMedicine. 41:299–309. 2019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Laguinge L, Bajenova O, Bowden E, Sayyah
J, Thomas P and Juhl H: Surface expression and CEA binding of hnRNP
M4 protein in HT29 colon cancer cells. Anticancer Res. 25:23–31.
2005.PubMed/NCBI
|