1
|
Sancho-Garnier H and Colonna M: Breast
cancer epidemiology. Presse Med. 48:1076–1084. 2019.PubMed/NCBI View Article : Google Scholar : (In French).
|
2
|
Waldman AD, Fritz JM and Lenardo MJ: A
guide to cancer immunotherapy: From T cell basic science to
clinical practice. Nat Rev Immunol. 20:651–668. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Oiseth SJ and Aziz MS: Cancer
immunotherapy: A brief review of the history, possibilities, and
challenges ahead. J Cancer Metastitis Treat. 3:250–261. 2017.
|
4
|
Le Naour J, Galluzzi L, Zitvogel L,
Kroemer G and Vacchelli E: Trial watch: TLR3 agonists in cancer
therapy. Oncoimmunology. 9(1771143)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Kawasaki T and Kawai T: Toll-like receptor
signaling pathways. Frontiers Immunol. 5(461)2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Iwasaki A and Medzhitov R: Toll-like
receptor control of the adaptive immune responses. Nat Immunol.
5:987–995. 2004.PubMed/NCBI View
Article : Google Scholar
|
7
|
Vacchelli E, Eggermont A, Sautès-Fridman
C, Galon J, Zitvogel L, Kroemer G and Galluzzi L: Trial Watch:
Toll-like receptor agonists for cancer therapy. Oncoimmunology.
2(e25238)2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Chen X, Zhang Y and Fu Y: The critical
role of Toll-like receptor-mediated signaling in cancer
immunotherapy. Med Drug Disc. 14(100122)2022.
|
9
|
Bianchi F, Pretto S, Tagliabue E, Balsari
A and Sfondrini L: Exploiting poly(I:C) to induce cancer cell
apoptosis. Cancer Biol Ther. 18:747–756. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Muresan XM, Bouchal J, Culig Z and Souček
K: Toll-like receptor 3 in solid cancer and therapy resistance.
Cancers (Basel). 12(3227)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Matsumoto M, Takeda Y, Tatematsu M and
Seya T: Toll-Like receptor 3 signal in dendritic cells benefits
cancer immunotherapy. Front Immunol. 8(1897)2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Yu M and Levine SJ: Toll-like receptor 3,
RIG-I-like receptors and the NLRP3 inflammasome: Key modulators of
innate immune responses to double-stranded RNA viruses. Cytokine
Growth Factor Rev. 22:63–72. 2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Holm CK, Petersen CC, Hvid M, Petersen L,
Paludan SR, Deleuran B and Hokland M: TLR3 ligand polyinosinic:
Polycytidylic acid induces IL-17A and IL-21 synthesis in human Th
cells. J Immunol. 183:4422–4431. 2009.PubMed/NCBI View Article : Google Scholar
|
14
|
Weber A, Kirejczyk Z, Besch R, Potthoff S,
Leverkus M and Hacker G: Proapoptotic signalling through Toll-like
receptor-3 involves TRIF-dependent activation of caspase-8 and is
under the control of inhibitor of apoptosis proteins in melanoma
cells. Cell Death Differ. 17:942–951. 2010.PubMed/NCBI View Article : Google Scholar
|
15
|
Shime H, Matsumoto M and Seya T:
Double-stranded RNA promotes CTL-independent tumor cytolysis
mediated by CD11b+Ly6G+ intratumor myeloid cells through the
TICAM-1 signaling pathway. Cell Death Differ. 24:385–396.
2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Bondhopadhyay B, Moirangthem A and Basu A:
Innate adjuvant receptor Toll-like receptor 3 can promote breast
cancer through cell surface. Tumor Biol. 36:1261–1271.
2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Paone A, Galli R, Gabellini C, Lukashev D,
Starace D, Gorlach A, De Cesaris P, Ziparo E, Del Bufalo D,
Sitkovsky MV, et al: Toll-like receptor 3 regulates angiogenesis
and apoptosis in prostate cancer cell lines through
hypoxia-inducible factor 1 alpha. Neoplasia. 12:539–549.
2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhan Z, Xie X, Cao H, Zhou X, Zhang XD,
Fan H and Liu Z: Autophagy facilitates TLR4-and TLR3-triggered
migration and invasion of lung cancer cells through the promotion
of TRAF6 ubiquitination. Autophagy. 10:257–268. 2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhao J, Zhang Z, Xue Y, Wang G, Cheng Y,
Pan Y, Zhao S and Hou Y: Anti-tumor macrophages activated by
ferumoxytol combined or surface-functionalized with the TLR3
agonist poly (I: C) promote melanoma regression. Theranostics.
8:6307–6321. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Fan L, Zhou P, Hong Q, Chen AX, Liu GY, Yu
KD and Shao ZM: Toll-like receptor 3 acts as a suppressor gene in
breast cancer initiation and progression: A two-stage association
study and functional investigation. Oncoimmunology.
8(e1593801)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Salaun B, Coste I, Rissoan MC, Lebecque SJ
and Renno T: TLR3 can directly trigger apoptosis in human cancer
cells. J Immunol. 176:4894–4901. 2006.PubMed/NCBI View Article : Google Scholar
|
22
|
Wulff S, Pries R and Wollenberg B:
Cytokine release of human NK cells solely triggered with Poly I: C.
Cell Immunol. 263:135–137. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Harashima N, Minami T, Uemura H and Harada
M: Transfection of poly (I: C) can induce reactive oxygen
species-triggered apoptosis and interferon-β-mediated growth arrest
in human renal cell carcinoma cells via innate adjuvant receptors
and the 2-5A system. Mol Cancer. 13(217)2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Chew V, Tow C, Huang C, Bard-Chapeau E,
Copeland NG, Jenkins NA, Weber A, Lim KH, Toh HC, Heikenwalder M,
et al: Toll-like receptor 3 expressing tumor parenchyma and
infiltrating natural killer cells in hepatocellular carcinoma
patients. J Natl Cancer Inst. 104:1796–1807. 2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Wischke C, Zimmermann J, Wessinger B,
Schendler A, Borchert HH, Peters JH, Peters JH, Nesselhut T and
Lorenzen DR: Poly (I:C) coated PLGA microparticles induce dendritic
cell maturation. Int J Pharm. 365:61–68. 2009.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhu X, Fallert-Junecko BA, Fujita M, Ueda
R, Kohanbash G, Kastenhuber ER, McDonald HA, Liu Y, Kalinski P,
Reinhart TA, et al: Poly-ICLC promotes the infiltration of effector
T cells into intracranial gliomas via induction of CXCL10 in
IFN-alpha and IFN-gamma dependent manners. Cancer Immunol
Immunother. 59:1401–1409. 2010.PubMed/NCBI View Article : Google Scholar
|
27
|
Kyi C, Roudko V, Sabado R, Saenger Y,
Loging W, Mandeli J, Thin TH, Lehrer D, Donovan M, Posner M, et al:
Therapeutic immune modulation against solid cancers with
intratumoral poly-ICLC: A pilot trial. Clin Cancer Res.
24:4937–4948. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Navabi H, Jasani B, Reece A, Clayton A,
Tabi Z, Donninger C, Mason M and Adams M: A clinical grade poly I:
C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T
cell responses of healthy donors and cancer patients in vitro.
Vaccine. 27:107–115. 2009.PubMed/NCBI View Article : Google Scholar
|
29
|
Brodsky I, Strayer DR, Krueger LJ and
Carter WA: Clinical studies with ampligen (mismatched
double-stranded RNA). J Biol Response Mod. 4:669–675.
1985.PubMed/NCBI
|
30
|
Martins KA, Bavari S and Salazar AM:
Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev
Vaccines. 14:447–459. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Hubbell HR: Synergistic antiproliferative
effect of human interferons in combination with mismatched
double-stranded RNA on human tumor cells. Int J Cancer. 37:359–365.
1986.PubMed/NCBI View Article : Google Scholar
|
32
|
Gatti G, Nunez NG, Nocera DA, Dejager L,
Libert C, Giraudo C and Maccioni M: Direct effect of ds RNA
mimetics on cancer cells induces endogenous IFN-β production
capable of improving dendritic cell function. Eur J Immunol.
43:1849–1861. 2013.PubMed/NCBI View Article : Google Scholar
|
33
|
Schwartz AL, Dickerson E, Dagia N, Malgor
R and McCall KD: TLR signaling inhibitor, phenylmethimazole, in
combination with tamoxifen inhibits human breast cancer cell
viability and migration. Oncotarget. 8:113295–113302.
2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Sharma S, Zhu L, Davoodi M, Harris-White
M, Lee JM, St John M, Salgia R and Dubinett S: TLR3 agonists and
proinflammatory antitumor activities. Expert Opin Ther Targets.
17:481–483. 2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Gosu V, Basith S, Kwon OP and Choi S:
Therapeutic applications of nucleic acids and their analogues in
Toll-like receptor signaling. Molecules. 17:13503–13529.
2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Owen AM, Fults JB, Patil NK, Hernandez A
and Bohannon JK: TLR agonists as mediators of trained immunity:
Mechanistic insight and immunotherapeutic potential to combat
infection. Front Immunol. 11(622614)2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Pahlavanneshan S, Sayadmanesh A,
Ebrahimiyan H and Basiri M: Toll-Like receptor-based strategies for
cancer immunotherapy. J Immunol Res. 2021(9912188)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Kaczanowska S, Joseph AM and Davila E: TLR
agonists: Our best frenemy in cancer immunotherapy. J Leukoc Biol.
93:847–863. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Ding L, Ren J, Zhang D, Li Y, Huang X, Ji
J, Hu Q, Wang H, Ni Y and Hou Y: The TLR3 agonist inhibit drug
efflux and sequentially consolidates low-dose cisplatin-based
chemoimmunotherapy while reducing side effects. Mol Cancer Ther.
16:1068–1079. 2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Matsuo A, Oshiumi H, Tsujita T, Mitani H,
Kasai H, Yoshimizu M, Matsumoto M and Seya T: Teleost TLR22
recognizes RNA duplex to induce IFN and protect cells from
birnaviruses. J Immunol. 181:3474–3485. 2008.PubMed/NCBI View Article : Google Scholar
|
41
|
Bernardo AR, Cosgaya JM, Aranda A and
Jiménez-Lara AM: Synergy between RA and TLR3 promotes type I
IFN-dependent apoptosis through upregulation of TRAIL pathway in
breast cancer cells. Cell Death Dis. 4(e479)2013.PubMed/NCBI View Article : Google Scholar
|
42
|
Aznar MA, Planelles L, Perez-Olivares M,
Molina C, Garasa S, Etxeberría I, Perez G, Rodriguez I, Bolaños E,
Lopez-Casas P, et al: Immunotherapeutic effects of intratumoral
nanoplexed poly I:C. J Immunother Cancer. 7(116)2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Ultimo A, Giménez C, Bartovsky P, Aznar E,
Sancenón F, Marcos MD, Amorós P, Bernardo AR, Martínez-Máñez R,
Jiménez-Lara AM and Murguía JR: Targeting innate immunity with
dsRNA-Conjugated mesoporous silica nanoparticles promotes antitumor
effects on breast cancer cells. Chemistry. 22:1582–1586.
2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Khodadust R, Alpsoy A, Ünsoy G and GÜndÜz
U: Poly (I: C)-and doxorubicin-loaded magnetic dendrimeric
nanoparticles affect the apoptosis-related gene expressions in
MCF-7 cells. Turk J Biol. 44:133–144. 2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Sheikhzadeh S, Delirezh N and Hobbenaghi
R: Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles
induce potent anti-tumor immunity in murine model of breast cancer.
Biomed Pharmacother. 142(111962)2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Colapicchioni V, Palchetti S, Pozzi D,
Marini ES, Riccioli A, Ziparo E, Papi M, Amenitsch H and Caracciolo
G: Killing cancer cells using nanotechnology: Novel poly (I: C)
loaded liposome-silica hybrid nanoparticles. J Mater Chem B.
3:7408–7416. 2015.PubMed/NCBI View Article : Google Scholar
|
47
|
Sultan H, Salazar AM and Celis E:
Poly-ICLC, a multi-functional immune modulator for treating cancer.
Semin Immunol. 49(101414)2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Jasani B, Navabi H and Adams M: Ampligen:
A potential toll-like 3 receptor adjuvant for immunotherapy of
cancer. Vaccine. 27:3401–3404. 2009.PubMed/NCBI View Article : Google Scholar
|
49
|
Keshavarz A, Pourbagheri-Sigaroodi A,
Zafari P, Bagheri N, Ghaffari SH and Bashash D: Toll-like receptors
(TLRs) in cancer; with an extensive focus on TLR agonists and
antagonists. IUBMB Life. 73:10–25. 2021.PubMed/NCBI View Article : Google Scholar
|
50
|
Mu QG, Lin G, Jeon M, Wang H, Chang FC,
Revia RA, Yu J and Zhang M: Iron oxide nanoparticle targeted
chemo-immunotherapy for triple negative breast cancer. Mat Today
(Kidlington). 50:149–169. 2021.PubMed/NCBI View Article : Google Scholar
|
51
|
Le UM, Yanasarn N, Lohr CV, Fischer KA and
Cui Z: Tumor chemo-immunotherapy using gemcitabine and a synthetic
dsRNA. Cancer Biol Ther. 7:440–447. 2008.PubMed/NCBI View Article : Google Scholar
|
52
|
Slingluff C, Mauldin I, Gaughan E, Dillon
P, Opyrchal M, Puzanov I, Kruse M, Gastman B, Friedlander P, Marron
T, et al: 337 Intratumoral immune therapy for recurrent breast
cancer with polyiclc, and tremelimumab combined with systemic
durvalumab. J Immunother Cancer 9: A1–A1054, 2021.
|
53
|
Isakoff SJ, Adams S, Soliman HH, Tung N,
Barry WT, Hu J, Trippa L, Deering R, Parker J, Park H, et al:
Abstract P3-09-15: A phase 1b study of PVX-410 (PVX) vaccine plus
durvalumab (DUR) as adjuvant therapy in HLA-A2+ early stage triple
negative breast cancer (eTNBC) to assess safety and immune
response. Cancer Res. 80: (suppl 4)(P3-06-15)2020.
|
54
|
Dillon PM, Petroni GR, Smolkin ME, Brenin
DR, Chianese-Bullock KA, Smith KT, Olson WC, Fanous IS, Nail CJ,
Brenin CM, et al: A pilot study of the immunogenicity of a
9-peptide breast cancer vaccine plus poly-ICLC in early stage
breast cancer. J Immunother Cancer. 5(92)2017.PubMed/NCBI View Article : Google Scholar
|
55
|
Brockwell NK, Owen KL, Zanker D, Spurling
A, Rautela J, Duivenvoorden HM, Baschuk N, Caramia F, Loi S, Darcy
PK, et al: Neoadjuvant interferons: Critical for effective
PD-1-based immunotherapy in TNBC. Cancer Immunol Res. 5:871–884.
2017.PubMed/NCBI View Article : Google Scholar
|
56
|
Glaffig M, Stergiou N, Schmitt E and Kunz
H: Immunogenicity of a fully synthetic MUC1 glycopeptide antitumor
vaccine enhanced by poly(I:C) as a TLR3-Activating adjuvant.
ChemMedChem. 12:722–727. 2017.PubMed/NCBI View Article : Google Scholar
|
57
|
Salaun B, Zitvogel L, Asselin-Paturel C,
Morel Y, Chemin K, Dubois C, Massacrier C, Conforti R, Chenard MP,
Sabourin JC, et al: TLR3 as a biomarker for the therapeutic
efficacy of double-stranded RNA in breast cancer. Cancer Res.
71:1607–1614. 2011.PubMed/NCBI View Article : Google Scholar
|
58
|
Conforti R, Ma Y, Morel Y, Paturel C,
Terme M, Viaud S, Ryffel B, Ferrantini M, Uppaluri R, Schreiber R,
et al: Opposing effects of toll-like receptor (TLR3) signaling in
tumors can be therapeutically uncoupled to optimize the anticancer
efficacy of TLR3 ligands optimizing poly (A: U) anticancer therapy.
Cancer Res. 70:490–500. 2010.PubMed/NCBI View Article : Google Scholar
|
59
|
Lacour J, Lacour F, Spira A, Michelson M,
Petit JY, Delage G, Sarrazin D, Contesso G and Viguier J: Adjuvant
treatment with polyadenylic-polyuridylic acid in operable breast
cancer: Updated results of a randomised trial. Br Med J (Clin Res
Ed). 288:589–592. 1984.PubMed/NCBI View Article : Google Scholar
|
60
|
Venkatesh A, Nandigam H, Muccioli M, Singh
M, Loftus T, Lewis D, Pate M and Benencia F: Regulation of
inflammatory factors by double-stranded RNA receptors in breast
cancer cells. Immunobiology. 223:466–476. 2018.PubMed/NCBI View Article : Google Scholar
|
61
|
Noori MS, O'Brien JD, Champa ZJ, Deosarkar
SP, Lanier OL, Qi C, Burdick MM, Schwartz FL, Bergmeier SC, McCall
KD and Goetz DJ: Phenylmethimazole and a thiazole derivative of
phenylmethimazole inhibit IL-6 expression by triple negative breast
cancer cells. Eur J Pharmacol. 803:130–137. 2017.PubMed/NCBI View Article : Google Scholar
|