Emerging applications of hypomethylating agents in the treatment of glioblastoma (Review)
- Authors:
- Thenzing J. Silva-Hurtado
- Julio F. Inocencio
- Raymund L. Yong
-
Affiliations: Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, Leo M. Davidoff Department of Neurosurgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY 10461, USA - Published online on: June 28, 2024 https://doi.org/10.3892/mco.2024.2757
- Article Number: 59
-
Copyright: © Silva-Hurtado et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, et al: Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 295:1079–1082. 2002.PubMed/NCBI View Article : Google Scholar | |
Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, et al: IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483. 2012.PubMed/NCBI View Article : Google Scholar | |
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, et al: IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 483:474–478. 2012.PubMed/NCBI View Article : Google Scholar | |
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021.PubMed/NCBI View Article : Google Scholar | |
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020. Neuro Oncol. 25 (12 Suppl 2):iv1–iv99. 2023.PubMed/NCBI View Article : Google Scholar | |
Alnahhas I, Alsawas M, Rayi A, Palmer JD, Raval R, Ong S, Giglio P, Murad MH and Puduvalli V: Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: A systematic review and meta-analysis. Neurooncol Adv. 2(vdaa082)2020.PubMed/NCBI View Article : Google Scholar | |
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M and Mańdziuk S: New directions in the therapy of glioblastoma. Cancers (Basel). 14(5377)2022.PubMed/NCBI View Article : Google Scholar | |
Handy DE, Castro R and Loscalzo J: Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation. 123:2145–2156. 2011.PubMed/NCBI View Article : Google Scholar | |
Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, et al: DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenetics. 12(64)2020.PubMed/NCBI View Article : Google Scholar | |
Duncan CG, Grimm SA, Morgan DL, Bushel PR and Bennett BD: NISC Comparative Sequencing Program. Roberts JD, Tyson FL, Merrick BA and Wade PA: Dosage compensation and DNA methylation landscape of the X chromosome in mouse liver. Sci Rep. 8(10138)2018.PubMed/NCBI View Article : Google Scholar | |
Brabson JP, Leesang T, Mohammad S and Cimmino L: Epigenetic regulation of genomic stability by vitamin C. Front Genet. 12(675780)2021.PubMed/NCBI View Article : Google Scholar | |
Dhar GA, Saha S, Mitra P and Nag Chaudhuri R: DNA methylation and regulation of gene expression: Guardian of our health. Nucleus (Calcutta). 64:259–270. 2021.PubMed/NCBI View Article : Google Scholar | |
Compere SJ and Palmiter RD: DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 25:233–240. 1981.PubMed/NCBI View Article : Google Scholar | |
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013.PubMed/NCBI View Article : Google Scholar | |
Mortusewicz O, Schermelleh L, Walter J, Cardoso MC and Leonhardt H: Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA. 102:8905–8909. 2005.PubMed/NCBI View Article : Google Scholar | |
Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E and Sasaki H: Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 429:900–903. 2004.PubMed/NCBI View Article : Google Scholar | |
Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A, Kawasaki K, Minoshima S, Krohn K, et al: Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics. 65:293–298. 2000.PubMed/NCBI View Article : Google Scholar | |
Jin B, Li Y and Robertson KD: DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2:607–617. 2011.PubMed/NCBI View Article : Google Scholar | |
Rideout WM III, Coetzee GA, Olumi AF and Jones PA: 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 249:1288–1290. 1990.PubMed/NCBI View Article : Google Scholar | |
Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M and Smale ST: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 138:114–128. 2009.PubMed/NCBI View Article : Google Scholar | |
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, et al: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 448:553–560. 2007.PubMed/NCBI View Article : Google Scholar | |
Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND and Scandura JM: DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 6(e14524)2011.PubMed/NCBI View Article : Google Scholar | |
Hellman A and Chess A: Gene body-specific methylation on the active X chromosome. Science. 315:1141–1143. 2007.PubMed/NCBI View Article : Google Scholar | |
Bogdanović O and Veenstra GJ: DNA methylation and methyl-CpG binding proteins: Developmental requirements and function. Chromosoma. 118:549–565. 2009.PubMed/NCBI View Article : Google Scholar | |
Li Y, Zheng H, Wang Q, Zhou C, Wei L, Liu X, Zhang W, Zhang Y, Du Z, Wang X and Xie W: Genome-wide analyses reveal a role of polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 19(18)2018.PubMed/NCBI View Article : Google Scholar | |
Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M and Schübeler D: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 30:755–766. 2008.PubMed/NCBI View Article : Google Scholar | |
Ghadiri Moghaddam F, Farajnia S, Karbalaei-Mahdi M and Monir L: Epigenetic insights in the diagnosis, prognosis, and treatment selection in CRC, an updated review. Mol Biol Rep. 49:10013–10022. 2022.PubMed/NCBI View Article : Google Scholar | |
Collings CK and Anderson JN: Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin. 10(18)2017.PubMed/NCBI View Article : Google Scholar | |
Huang KK, Ramnarayanan K, Zhu F, Srivastava S, Xu C, Tan ALK, Lee M, Tay S, Das K, Xing M, et al: Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell. 33:137–150.e5. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B and Chen Y: Gene body methylation in cancer: Molecular mechanisms and clinical applications. Clin Epigenetics. 14(154)2022.PubMed/NCBI View Article : Google Scholar | |
Santini V and Ossenkoppele GJ: Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use. Crit Rev Oncol Hematol. 140:1–7. 2019.PubMed/NCBI View Article : Google Scholar | |
Holliday R and Ho T: DNA methylation and epigenetic inheritance. Methods. 27:179–183. 2002.PubMed/NCBI View Article : Google Scholar | |
Jabbour E, Issa JP, Garcia-Manero G and Kantarjian H: Evolution of decitabine development: Accomplishments, ongoing investigations, and future strategies. Cancer. 112:2341–2351. 2008.PubMed/NCBI View Article : Google Scholar | |
Sorm F and Veselý J: Effect of 5-aza-2'-deoxycytidine against leukemic and hemopoietic tissues in AKR mice. Neoplasma. 15:339–343. 1968.PubMed/NCBI | |
Xu K and Hansen E: Novel agents for myelodysplastic syndromes. J Oncol Pharm Pract. 27:1982–1992. 2021.PubMed/NCBI View Article : Google Scholar | |
Kordella C, Lamprianidou E and Kotsianidis I: Mechanisms of action of hypomethylating agents: Endogenous retroelements at the epicenter. Front Oncol. 11(650473)2021.PubMed/NCBI View Article : Google Scholar | |
Quintás-Cardama A, Santos FP and Garcia-Manero G: Therapy with azanucleosides for myelodysplastic syndromes. Nat Rev Clin Oncol. 7:433–444. 2010.PubMed/NCBI View Article : Google Scholar | |
Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C and MacBeth KJ: A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One. 5(e9001)2010.PubMed/NCBI View Article : Google Scholar | |
Seelan RS, Mukhopadhyay P, Pisano MM and Greene RM: Effects of 5-Aza-2'-deoxycytidine (decitabine) on gene expression. Drug Metab Rev. 50:193–207. 2018.PubMed/NCBI View Article : Google Scholar | |
Cashen AF, Shah AK, Todt L, Fisher N and DiPersio J: Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemother Pharmacol. 61:759–766. 2008.PubMed/NCBI View Article : Google Scholar | |
Chabot GG, Rivard GE and Momparler RL: Plasma and cerebrospinal fluid pharmacokinetics of 5-Aza-2'-deoxycytidine in rabbits and dogs. Cancer Res. 43:592–597. 1983.PubMed/NCBI | |
Kim N, Norsworthy KJ, Subramaniam S, Chen H, Manning ML, Kitabi E, Earp J, Ehrlich LA, Okusanya OO, Vallejo J, et al: FDA approval summary: Decitabine and cedazuridine tablets for myelodysplastic syndromes. Clin Cancer Res. 28:3411–3416. 2022.PubMed/NCBI View Article : Google Scholar | |
Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O'Brien S, Cortes J, Faderl S, Bueso-Ramos C, Ravandi F, Estrov Z, et al: Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 109:52–57. 2007.PubMed/NCBI View Article : Google Scholar | |
Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F, et al: Decitabine improves patient outcomes in myelodysplastic syndromes: Results of a phase III randomized study. Cancer. 106:1794–1803. 2006.PubMed/NCBI View Article : Google Scholar | |
Müller A and Florek M: 5-Azacytidine/azacitidine. Recent Results Cancer Res. 184:159–170. 2010.PubMed/NCBI View Article : Google Scholar | |
Krawczyk J, Keane N, Freeman CL, Swords R, O'Dwyer M and Giles FJ: 5-Azacytidine for the treatment of myelodysplastic syndromes. Expert Opin Pharmacother. 14:1255–1268. 2013.PubMed/NCBI View Article : Google Scholar | |
Glover AB, Leyland-Jones BR, Chun HG, Davies B and Hoth DF: Azacitidine: 10 Years later. Cancer Treat Rep. 71:737–746. 1987.PubMed/NCBI | |
Kaminskas E, Farrell AT, Wang YC, Sridhara R and Pazdur R: FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 10:176–182. 2005.PubMed/NCBI View Article : Google Scholar | |
Marcucci G, Silverman L, Eller M, Lintz L and Beach CL: Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol. 45:597–602. 2005.PubMed/NCBI View Article : Google Scholar | |
Garcia-Manero G, Roboz G, Walsh K, Kantarjian H, Ritchie E, Kropf P, O'Connell C, Tibes R, Lunin S, Rosenblat T, et al: Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 6:e317–e327. 2019.PubMed/NCBI View Article : Google Scholar | |
Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ, Qiu X, Yoo CB and Jones PA: S110, a 5-Aza-2'-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther. 9:1443–1450. 2010.PubMed/NCBI View Article : Google Scholar | |
Issa JJ, Roboz G, Rizzieri D, Jabbour E, Stock W, O'Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, et al: Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: A multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol. 16:1099–1110. 2015.PubMed/NCBI View Article : Google Scholar | |
Ramakrishnan S, Hu Q, Krishnan N, Wang D, Smit E, Granger V, Rak M, Attwood K, Johnson C, Morrison C, et al: Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis. 8(3217)2017.PubMed/NCBI View Article : Google Scholar | |
Li M and Zhang D: DNA methyltransferase-1 in acute myeloid leukaemia: Beyond the maintenance of DNA methylation. Ann Med. 54:2011–2023. 2022.PubMed/NCBI View Article : Google Scholar | |
Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, et al: Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat Cancer. 2:1002–1017. 2021.PubMed/NCBI | |
Quesnel B and Fenaux P: P15INK4b gene methylation and myelodysplastic syndromes. Leuk Lymphoma. 35:437–443. 1999.PubMed/NCBI View Article : Google Scholar | |
Daver NG, Maiti A, Kadia TM, Vyas P, Majeti R, Wei AH, Garcia-Manero G, Craddock C, Sallman DA and Kantarjian HM: TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: Biology, current therapy, and future directions. Cancer Discov. 12:2516–2529. 2022.PubMed/NCBI View Article : Google Scholar | |
Claus R, Hackanson B, Poetsch AR, Zucknick M, Sonnet M, Blagitko-Dorfs N, Hiller J, Wilop S, Brümmendorf TH, Galm O, et al: Quantitative analyses of DAPK1 methylation in AML and MDS. Int J Cancer. 131:E138–E142. 2012.PubMed/NCBI View Article : Google Scholar | |
Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C, Niemeyer CM and Lübbert M: The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 23:1019–1028. 2009.PubMed/NCBI View Article : Google Scholar | |
Xie B, Peng F, He F, Cheng Y, Cheng J, Zhou Z and Mao W: DNA methylation influences the CTCF-modulated transcription of RASSF1A in lung cancer cells. Cell Biol Int. 46:1900–1914. 2022.PubMed/NCBI View Article : Google Scholar | |
Tang Q, Cheng J, Cao X, Surowy H and Burwinkel B: Blood-based DNA methylation as biomarker for breast cancer: A systematic review. Clin Epigenetics. 8(115)2016.PubMed/NCBI View Article : Google Scholar | |
Cheng W, Jiang Y, Liu C, Shen O, Tang W and Wang X: Identification of aberrant promoter hypomethylation of HOXA10 in ovarian cancer. J Cancer Res Clin Oncol. 136:1221–1227. 2010.PubMed/NCBI View Article : Google Scholar | |
Ranjan N, Pandey V, Panigrahi MK, Klumpp L, Naumann U and Babu PP: The tumor suppressor MTUS1/ATIP1 modulates tumor promotion in glioma: Association with epigenetics and DNA repair. Cancers (Basel). 13(1245)2021.PubMed/NCBI View Article : Google Scholar | |
Götze S, Feldhaus V, Traska T, Wolter M, Reifenberger G, Tannapfel A, Kuhnen C, Martin D, Müller O and Sievers S: ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma. BMC Cancer. 9(447)2009.PubMed/NCBI View Article : Google Scholar | |
Alaminos M, Dávalos V, Ropero S, Setién F, Paz MF, Herranz M, Fraga MF, Mora J, Cheung NK, Gerald WL and Esteller M: EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res. 65:2565–2571. 2005.PubMed/NCBI View Article : Google Scholar | |
Sanaei M and Kavoosi F: The effect of 5-aza,2'-deoxyCytidine (5 AZA CdR or decitabine) on extrinsic, intrinsic, and JAK/STAT pathways in neuroblastoma and glioblastoma cells lines. Asian Pac J Cancer Prev. 24:1841–1854. 2023.PubMed/NCBI View Article : Google Scholar | |
Yang X, Han H, De Carvalho DD, Lay FD, Jones PA and Liang G: Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 26:577–590. 2014.PubMed/NCBI View Article : Google Scholar | |
Ochs K and Kaina B: Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res. 60:5815–5824. 2000.PubMed/NCBI | |
Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, Tanino M, Nishihara H and Tanaka S: Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res. 18:1037–1046. 2008.PubMed/NCBI View Article : Google Scholar | |
Yi JM, Tsai HC, Glöckner SC, Lin S, Ohm JE, Easwaran H, James CD, Costello JF, Riggins G, Eberhart CG, et al: Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 68:8094–8103. 2008.PubMed/NCBI View Article : Google Scholar | |
Federici L, Capelle L, Annereau M, Bielle F, Willekens C, Dehais C, Laigle-Donadey F, Hoang-Xuan K, Delattre JY, Idbaih A, et al: 5-Azacitidine in patients with IDH1/2-mutant recurrent glioma. Neuro Oncol. 22:1226–1228. 2020.PubMed/NCBI View Article : Google Scholar | |
Sato T, Issa JJ and Kropf P: DNA Hypomethylating drugs in cancer therapy. Cold Spring Harb Perspect Med. 7(a026948)2017.PubMed/NCBI View Article : Google Scholar | |
Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T and Nephew KP: Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 72:2197–2205. 2012.PubMed/NCBI View Article : Google Scholar | |
Glaysher S, Gabriel FG, Johnson P, Polak M, Knight LA, Parker K, Poole M, Narayanan A and Cree IA: NHS Collaborative Research Programme for Predictive Oncology. Molecular basis of chemosensitivity of platinum pre-treated ovarian cancer to chemotherapy. Br J Cancer. 103:656–662. 2010.PubMed/NCBI View Article : Google Scholar | |
Hannon CE and Eisen MB: Intrinsic protein disorder is insufficient to drive subnuclear clustering in embryonic transcription factors. Elife. 12(RP88221)2024.PubMed/NCBI View Article : Google Scholar | |
Moen EL, Stark AL, Zhang W, Dolan ME and Godley LA: The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide. Mol Cancer Ther. 13:1334–1344. 2014.PubMed/NCBI View Article : Google Scholar | |
Plumb JA, Strathdee G, Sludden J, Kaye SB and Brown R: Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60:6039–6044. 2000.PubMed/NCBI | |
Tawbi HA, Beumer JH, Tarhini AA, Moschos S, Buch SC, Egorin MJ, Lin Y, Christner S and Kirkwood JM: Safety and efficacy of decitabine in combination with temozolomide in metastatic melanoma: A phase I/II study and pharmacokinetic analysis. Ann Oncol. 24:1112–1119. 2013.PubMed/NCBI View Article : Google Scholar | |
Skiriutė D, Vaitkienė P, Ašmonienė V, Steponaitis G, Deltuva VP and Tamašauskas A: Promoter methylation of AREG, HOXA11, hMLH1, NDRG2, NPTX2 and Tes genes in glioblastoma. J Neurooncol. 113:441–449. 2013.PubMed/NCBI View Article : Google Scholar | |
Rodríguez-Hernández I, Garcia JL, Santos-Briz A, Hernández-Laín A, González-Valero JM, Gómez-Moreta JA, Toldos-González O, Cruz JJ, Martin-Vallejo J and González-Sarmiento R: Integrated analysis of mismatch repair system in malignant astrocytomas. PLoS One. 8(e76401)2013.PubMed/NCBI View Article : Google Scholar | |
Fukushima T, Katayama Y, Watanabe T, Yoshino A, Ogino A, Ohta T and Komine C: Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea. Clin Cancer Res. 11:1539–1544. 2005.PubMed/NCBI View Article : Google Scholar | |
Gallitto M, Cheng He R, Inocencio JF, Wang H, Zhang Y, Deikus G, Wasserman I, Strahl M, Smith M, Sebra R and Yong RL: Epigenetic preconditioning with decitabine sensitizes glioblastoma to temozolomide via induction of MLH1. J Neurooncol. 147:557–566. 2020.PubMed/NCBI View Article : Google Scholar | |
Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, Sokol L, Stein MN, Rodriguez-Rodriquez L, Kaufman HL, et al: Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 126:2334–2340. 2016.PubMed/NCBI View Article : Google Scholar | |
Panda A, Betigeri A, Subramanian K, Ross JS, Pavlick DC, Ali S, Markowski P, Silk A, Kaufman HL, Lattime E, et al: Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors. JCO Precis Oncol. 2017(PO.17.00146)2017.PubMed/NCBI View Article : Google Scholar | |
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128. 2015.PubMed/NCBI View Article : Google Scholar | |
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK and Kishore U: Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front Immunol. 11(1402)2020.PubMed/NCBI View Article : Google Scholar | |
Zaidi N and Jaffee EM: Immune cells track hard-to-target brain tumours. Nature. 565:170–171. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhong J, Yang X, Chen J, He K, Gao X, Wu X, Zhang M, Zhou H, Xiao F, An L, et al: Circular EZH2-encoded EZH2-92aa mediates immune evasion in glioblastoma via inhibition of surface NKG2D ligands. Nat Commun. 13(4795)2022.PubMed/NCBI View Article : Google Scholar | |
Long S, Huang G, Ouyang M, Xiao K, Zhou H, Hou A, Li Z, Zhong Z, Zhong D, Wang Q, et al: Epigenetically modified AP-2α by DNA methyltransferase facilitates glioma immune evasion by upregulating PD-L1 expression. Cell Death Dis. 14(365)2023.PubMed/NCBI View Article : Google Scholar | |
Tompa M, Kraboth Z, Galik B, Kajtar B, Gyenesei A and Kalman B: Epigenetic suppression of the IL-7 pathway in progressive glioblastoma. Biomedicines. 10(2174)2022.PubMed/NCBI View Article : Google Scholar | |
Héninger E, Krueger TE and Lang JM: Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. 6(29)2015.PubMed/NCBI View Article : Google Scholar | |
Malekzadeh P, Pasetto A, Robbins PF, Parkhurst MR, Paria BC, Jia L, Gartner JJ, Hill V, Yu Z, Restifo NP, et al: Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J Clin Invest. 129:1109–1114. 2019.PubMed/NCBI View Article : Google Scholar | |
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, et al: T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 375:2255–2262. 2016.PubMed/NCBI View Article : Google Scholar | |
Ma R, Rei M, Woodhouse I, Ferris K, Kirschner S, Chandran A, Gileadi U, Chen JL, Pereira Pinho M, Ariosa-Morejon Y, et al: Decitabine increases neoantigen and cancer testis antigen expression to enhance T-cell-mediated toxicity against glioblastoma. Neuro Oncol. 24:2093–2106. 2022.PubMed/NCBI View Article : Google Scholar | |
Okemoto K, Kasai K, Wagner B, Haseley A, Meisen H, Bolyard C, Mo X, Wehr A, Lehman A, Fernandez S, et al: DNA demethylating agents synergize with oncolytic HSV1 against malignant gliomas. Clin Cancer Res. 19:5952–5959. 2013.PubMed/NCBI View Article : Google Scholar | |
Nebhan CA and Johnson DB: Pembrolizumab in the adjuvant treatment of melanoma: Efficacy and safety. Expert Rev Anticancer Ther. 21:583–590. 2021.PubMed/NCBI View Article : Google Scholar | |
Allen PB, Savas H, Evens AM, Advani RH, Palmer B, Pro B, Karmali R, Mou E, Bearden J, Dillehay G, et al: Pembrolizumab followed by AVD in untreated early unfavorable and advanced-stage classical Hodgkin lymphoma. Blood. 137:1318–1326. 2021.PubMed/NCBI View Article : Google Scholar | |
Nie J, Wang C, Liu Y, Yang Q, Mei Q, Dong L, Li X, Liu J, Ku W, Zhang Y, et al: Addition of low-dose decitabine to anti-PD-1 antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma. J Clin Oncol. 37:1479–1489. 2019.PubMed/NCBI View Article : Google Scholar | |
Merseburger AS, Apolo AB, Chowdhury S, Hahn NM, Galsky MD, Milowsky MI, Petrylak D, Powles T, Quinn DI, Rosenberg JE, et al: SIU-ICUD recommendations on bladder cancer: Systemic therapy for metastatic bladder cancer. World J Urol. 37:95–105. 2019.PubMed/NCBI View Article : Google Scholar | |
Chowdhury S, Infante JR, Hawkins R, Voss MH, Perini R, Arkenau T, Voskoboynik M, Aimone P, Naeije I, Reising A and McDermott DF: A phase I/II study to assess the safety and efficacy of pazopanib and pembrolizumab combination therapy in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 19:434–446. 2021.PubMed/NCBI View Article : Google Scholar | |
Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG and Youngblood B: De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 170:142–157.e19. 2017.PubMed/NCBI View Article : Google Scholar | |
Li X, Li Y, Dong L, Chang Y, Zhang X, Wang C, Chen M, Bo X, Chen H, Han W and Nie J: Decitabine priming increases anti-PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models. J Clin Invest. 133(e165673)2023.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Tong C, Dai H, Wu Z, Han X, Guo Y, Chen D, Wei J, Ti D, Liu Z, et al: Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun. 12(409)2021.PubMed/NCBI View Article : Google Scholar | |
Papadatos-Pastos D, Yuan W, Pal A, Crespo M, Ferreira A, Gurel B, Prout T, Ameratunga M, Chénard-Poirier M, Curcean A, et al: Phase 1, dose-escalation study of guadecitabine (SGI-110) in combination with pembrolizumab in patients with solid tumors. J Immunother Cancer. 10(e004495)2022.PubMed/NCBI View Article : Google Scholar | |
Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018.PubMed/NCBI View Article : Google Scholar | |
Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020.PubMed/NCBI View Article : Google Scholar | |
Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M, Bähr O, et al: Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol. 25:123–134. 2023.PubMed/NCBI View Article : Google Scholar | |
Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, Ansstas G, Baehring J, Taylor JW, Honnorat J, et al: Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 24:1935–1949. 2022.PubMed/NCBI View Article : Google Scholar | |
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019.PubMed/NCBI View Article : Google Scholar | |
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019.PubMed/NCBI View Article : Google Scholar | |
Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, et al: Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 618:144–150. 2023.PubMed/NCBI View Article : Google Scholar | |
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 18:1373–1385. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y and Tian X: Vaccine adjuvants: Mechanisms and platforms. Signal Transduct Target Ther. 8(283)2023.PubMed/NCBI View Article : Google Scholar | |
Palucka K and Banchereau J: Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277. 2012.PubMed/NCBI View Article : Google Scholar | |
Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, Tran DD, Ansstas G, Cobbs CS, Heth JA, et al: Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: A phase 3 prospective externally controlled cohort trial. JAMA Oncol. 9:112–121. 2023.PubMed/NCBI View Article : Google Scholar | |
Everson RG, Antonios JP, Lisiero DN, Soto H, Scharnweber R, Garrett MC, Yong WH, Li N, Li G, Kruse CA, et al: Efficacy of systemic adoptive transfer immunotherapy targeting NY-ESO-1 for glioblastoma. Neuro Oncol. 18:368–378. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, et al: IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol. 18:1402–1412. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Kim WJ, Rao AV, Jaman E, Deibert CP, Sandlesh P, Krueger K, Allen JC and Amankulor NM: In vivo efficacy of decitabine as a natural killer cell-mediated immunotherapy against isocitrate dehydrogenase mutant gliomas. Neurosurg Focus. 52(E3)2022.PubMed/NCBI View Article : Google Scholar |