
Molecular mechanism and therapeutic strategies for embryonal tumors with multilayered rosettes in children (Review)
- Authors:
- Wen-Qiong Lv
- Ju Gao
- Xia Guo
-
Affiliations: Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: January 27, 2025 https://doi.org/10.3892/mco.2025.2825
- Article Number: 30
-
Copyright: © Lv et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Li BK, Al-Karmi S, Huang A and Bouffet E: Pediatric embryonal brain tumors in the molecular era. Expert Rev Mol Diagn. 20:293–303. 2020.PubMed/NCBI View Article : Google Scholar | |
Lambo S, Von Hoff K, Korshunov A, Pfister SM and Kool M: ETMR: A tumor entity in its infancy. Acta Neuropathol (Berl). 140:249–266. 2020.PubMed/NCBI View Article : Google Scholar | |
Su Y and Ma XL: The characteristics and treatment of rare embryonal tumors of central nervous system in children. Chin J Appl Clin Pediatr. 36:168–171. 2021. | |
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021.PubMed/NCBI View Article : Google Scholar | |
Kleinman CL, Gerges N, Papillon-Cavanagh S, Sin-Chan P, Pramatarova A, Quang DA, Adoue V, Busche S, Caron M, Djambazian H, et al: Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet. 46:39–44. 2014.PubMed/NCBI View Article : Google Scholar | |
Lambo S, Gröbner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A, Romero JC, Mauermann M, Brabetz S, Krausert S, et al: The molecular landscape of ETMR at diagnosis and relapse. Nature. 576:274–280. 2019.PubMed/NCBI View Article : Google Scholar | |
Xu K, Sun Z, Wang L and Guan W: Embryonal tumors with multilayered rosettes, C19MC-altered or not elsewhere classified: Clinicopathological characteristics, prognostic factors, and outcomes of 17 children from 2018 to 2022. Front Oncol. 12(1001959)2022.PubMed/NCBI View Article : Google Scholar | |
Juhnke BO, Gessi M, Gerber NU, Friedrich C, Mynarek M, von Bueren AO, Haberler C, Schüller U, Kortmann RD, Timmermann B, et al: Treatment of embryonal tumors with multilayered rosettes with carboplatin/etoposide induction and high-dose chemotherapy within the prospective P-HIT trial. Neuro Oncol. 24:127–137. 2022.PubMed/NCBI View Article : Google Scholar | |
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al: DNA methylation-based classification of central nervous system tumors. Nature. 555:469–474. 2018.PubMed/NCBI View Article : Google Scholar | |
Raghuram N, Khan S, Mumal I, Bouffet E and Huang A: Embryonal tumors with multi-layered rosettes: A disease of dysregulated miRNAs. J Neurooncol. 150:63–73. 2020.PubMed/NCBI View Article : Google Scholar | |
Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, et al: Frequent amplification of a chr19q13.41 MicroRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell. 16:533–546. 2009.PubMed/NCBI View Article : Google Scholar | |
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, et al: Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 37:766–770. 2005.PubMed/NCBI View Article : Google Scholar | |
Bortolin-Cavaille ML, Dance M, Weber M and Cavaille J: C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 37:3464–3473. 2009.PubMed/NCBI View Article : Google Scholar | |
Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, et al: MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells. 26:2496–2505. 2008.PubMed/NCBI View Article : Google Scholar | |
Korshunov A, Remke M, Gessi M, Ryzhova M, Hielscher T, Witt H, Tobias V, Buccoliero AM, Sardi I, Gardiman MP, et al: Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 120:253–260. 2010.PubMed/NCBI View Article : Google Scholar | |
Pfister S, Remke M, Castoldi M, Bai AHC, Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P and Korshunov A: Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 117:457–464. 2009.PubMed/NCBI View Article : Google Scholar | |
Korshunov A, Sturm D, Ryzhova M, Hovestadt V, Gessi M, Jones DT, Remke M, Northcott P, Perry A, Picard D, et al: Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol. 128:279–289. 2014.PubMed/NCBI View Article : Google Scholar | |
Picard D, Miller S, Hawkins CE, Bouffet E, Rogers HA, Chan TS, Kim SK, Ra YS, Fangusaro J, Korshunov A, et al: Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: An integrative genomic analysis. Lancet Oncol. 13:838–848. 2012.PubMed/NCBI View Article : Google Scholar | |
Spence T, Sin-Chan P, Picard D, Barszczyk M, Hoss K, Lu M, Kim SK, Ra YS, Nakamura H, Fangusaro J, et al: CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathol. 128:291–303. 2014.PubMed/NCBI View Article : Google Scholar | |
Setty BA, Jinesh GG, Arnold M, Pettersson F, Cheng CH, Cen L, Yoder SJ, Teer JK, Flores ER, Reed DR and Brohl AS: The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genet. 16(e1008642)2020.PubMed/NCBI View Article : Google Scholar | |
Ward A, Shukla K, Balwierz A, Soons Z, König R, Sahin Ö and Wiemann S: MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER + breast cancer. J Pathol. 233:368–379. 2014.PubMed/NCBI View Article : Google Scholar | |
Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G, Capranico G, Mantovani V, Marinello J, Sabbioni S, et al: In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol. 227:275–285. 2012.PubMed/NCBI View Article : Google Scholar | |
Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, Du Y, Lu M, Patel N, Torchia J, et al: A C19MC-LIN28A-MYCN oncogenic circuit driven by hijacked Super-enhancers is a distinct therapeutic vulnerability in ETMRs: A lethal brain tumor. Cancer Cell. 36:51–67.e7. 2019.PubMed/NCBI View Article : Google Scholar | |
Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV and Hannon GJ: Dicer is essential for mouse development. Nat Genet. 35:215–217. 2003.PubMed/NCBI View Article : Google Scholar | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Bio. 15:509–524. 2014.PubMed/NCBI View Article : Google Scholar | |
De Kock L, Priest JR, Foulkes WD and Alexandrescu S: An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol. 139:689–701. 2020.PubMed/NCBI View Article : Google Scholar | |
Foulkes WD, Priest JR and Duchaine TF: DICER1: Mutations, microRNAs and mechanisms. Nat Rev Cancer. 14:662–672. 2014.PubMed/NCBI View Article : Google Scholar | |
Uro-Coste E, Masliah-Planchon J, Siegfried A, Blanluet M, Lambo S, Kool M, Roujeau T, Boetto S, Palenzuela G, Bertozzi AI, et al: ETMR-like infantile cerebellar embryonal tumors in the extended morphologic spectrum of DICER1-related tumors. Acta Neuropathol. 137:175–177. 2019.PubMed/NCBI View Article : Google Scholar | |
Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013.PubMed/NCBI View Article : Google Scholar | |
Gu Y, Sun J, Groome LJ and Wang Y: Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 304:E836–E843. 2013.PubMed/NCBI View Article : Google Scholar | |
Malnou EC, Umlauf D, Mouysset M and Cavaillé J: Imprinted MicroRNA gene clusters in the evolution, development, and functions of mammalian placenta. Front Genet. 9(706)2019.PubMed/NCBI View Article : Google Scholar | |
Gessi M, Zur Muehlen A, Lauriola L, Gardiman MP, Giangaspero F and Pietsch T: TP53, β-Catenin and c-myc/N-myc status in embryonal tumours with ependymoblastic rosettes: TP53, β-Catenin, c-myc/N-myc in embryonal tumors with ependymoblastic rosettes. Neuropathol Appl Neurobiol. 37:406–413. 2011.PubMed/NCBI View Article : Google Scholar | |
Neumann JE, Wefers AK, Lambo S, Bianchi E, Bockstaller M, Dorostkar MM, Meister V, Schindler P, Korshunov A, von Hoff K, et al: A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat Med. 23:1191–1202. 2017.PubMed/NCBI View Article : Google Scholar | |
Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW and Pavletich NP: Structure of a β-TrCP1-Skp1-β-catenin complex. Mol Cell. 11:1445–1456. 2003.PubMed/NCBI View Article : Google Scholar | |
Viswanathan SR, Daley GQ and Gregory RI: Selective blockade of MicroRNA processing by Lin28. Science. 320:97–100. 2008.PubMed/NCBI View Article : Google Scholar | |
Viswanathan SR and Daley GQ: Lin28: A MicroRNA regulator with a macro role. Cell. 140:445–449. 2010.PubMed/NCBI View Article : Google Scholar | |
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007.PubMed/NCBI View Article : Google Scholar | |
Korshunov A, Ryzhova M, Jones DTW, Northcott PA, Van Sluis P, Volckmann R, Koster J, Versteeg R, Cowdrey C, Perry A, et al: LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol. 124:875–881. 2012.PubMed/NCBI View Article : Google Scholar | |
Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA, Lockhart VL, et al: Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 41:843–848. 2009.PubMed/NCBI View Article : Google Scholar | |
Rao S, Rajeswarie RT, Chickabasaviah Yasha T, Nandeesh BN, Arivazhagan A and Santosh V: LIN28A, a sensitive immunohistochemical marker for embryonal tumor with multilayered Rosettes (ETMR), is also positive in a subset of atypical teratoid/rhabdoid tumor (AT/RT). Childs Nerv Syst. 33:1953–1959. 2017.PubMed/NCBI View Article : Google Scholar | |
Hagan JP, Piskounova E and Gregory RI: Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol. 16:1021–1025. 2009.PubMed/NCBI View Article : Google Scholar | |
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J and Kim VN: TUT4 in Concert with Lin28 suppresses MicroRNA biogenesis through Pre-MicroRNA uridylation. Cell. 138:696–708. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, et al: The Lin28/let-7 Axis regulates glucose metabolism. Cell. 147:81–94. 2011.PubMed/NCBI View Article : Google Scholar | |
Spence T, Perotti C, Sin-Chan P, Picard D, Wu W, Singh A, Anderson C, Blough MD, Cairncross JG, Lafay-Cousin L, et al: A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in embryonal tumor with multilayered rosettes. Dev Oncol. 16:62–71. 2014.PubMed/NCBI View Article : Google Scholar | |
Patterson M, Gaeta X, Loo K, Edwards M, Smale S, Cinkornpumin J, Xie Y, Listgarten J, Azghadi S, Douglass SM, et al: let-7 miRNAs can act through notch to regulate human gliogenesis. Stem Cell Rep. 3:758–773. 2014.PubMed/NCBI View Article : Google Scholar | |
Molenaar JJ, Domingo-Fernández R, Ebus ME, Lindner S, Koster J, Drabek K, Mestdagh P, van Sluis P, Valentijn LJ, van Nes J, et al: LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet. 44:1199–1206. 2012.PubMed/NCBI View Article : Google Scholar | |
Dottermusch M, Biabani A, Lempertz T, Schumann Y, Navolic J, Godbole S, Obrecht D, Frank S, Dorostkar MM, Voß H, et al: Integrated proteomics spotlight the proteasome as a therapeutic vulnerability in embryonal tumors with multilayered rosettes. Neuro Oncol. 26:935–949. 2024.PubMed/NCBI View Article : Google Scholar | |
Gualano FM, Hassoun P, Carter CL and Hanson D: Embryonal tumor with multilayered rosettes: Post-treatment maturation and implications for future therapy. Cancer Reports. 6(e1812)2023.PubMed/NCBI View Article : Google Scholar | |
Schmidt C, Schubert NA, Brabetz S, Mack N, Schwalm B, Chan JA, Selt F, Herold-Mende C, Witt O, Milde T, et al: Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Dev Oncol. 19:1607–1617. 2017.PubMed/NCBI View Article : Google Scholar | |
Cocito C, Arias-Stella EU, Zhang X, McKnight C, Itkin Z, Klumpp-Thomas C, Cruzeiro GA, Chi SN, Pisapia DJ, Filbin MG and Dahmane N: ATRT-11. development of novel preclinical models and therapeutic strategies for etmr. Neuro Oncol. 25 (Suppl 1)(i3)2023. | |
Hanson D, Hoffman LM, Nagabushan S, Goumnerova LC, Rathmann A, Vogel T, Ziegler DS and Chi S: A modified IRS-III chemotherapy regimen leads to prolonged survival in children with embryonal tumor with multilayer rosettes. Neurooncol Adv. 2(vdaa120)2020.PubMed/NCBI View Article : Google Scholar | |
Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC, Khokhar S, Wickiser JE, Karandikar NJ, Malter JS, et al: Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumors. Nat Commun. 5(4802)2014.PubMed/NCBI View Article : Google Scholar | |
Vedanayagam J, Chatila WK, Aksoy BA, Majumdar S, Skanderup AJ, Demir E, Schultz N, Sander C and Lai EC: Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis. Nat Commun. 10(3682)2019.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Chen J, Yang W, Mo F, Senz J, Yap D, Anglesio MS, Gilks B, Morin GB and Huntsman DG: The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian sertoli-leydig cell tumors. Neoplasia. 17:650–660. 2015.PubMed/NCBI View Article : Google Scholar | |
Antao AM, Tyagi A, Kim KS and Ramakrishna S: Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers (Basel). 12(1579)2020.PubMed/NCBI View Article : Google Scholar | |
El Hage A, French SL, Beyer AL and Tollervey D: Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Gene Dev. 24:1546–1558. 2010.PubMed/NCBI View Article : Google Scholar | |
Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB and Stewart L: The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci. 99:15387–15392. 2002.PubMed/NCBI View Article : Google Scholar | |
Das SK, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B and Das BB: Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 44:8363–8375. 2016.PubMed/NCBI View Article : Google Scholar | |
Smith SG and Zhou MM: The bromodomain: A new target in emerging epigenetic medicine. ACS Chem Biol. 11:598–608. 2016.PubMed/NCBI View Article : Google Scholar | |
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, et al: Selective inhibition of BET bromodomains. Nature. 468:1067–1073. 2010.PubMed/NCBI View Article : Google Scholar |