MicroRNAs and hypospadias: A systematic review
- Authors:
- Mahboobeh Amoushahi
- Peter Hjorth Jørgensen
- Anastasia Buch Kjeldgaard
- Eugene Padi
- Magdalena Fossum
-
Affiliations: Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark, Department of Pediatric Surgery, Center of Cancer and Organ Diseases, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark - Published online on: November 18, 2024 https://doi.org/10.3892/mi.2024.206
- Article Number: 7
-
Copyright : © Amoushahi et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Lee HJ: Additional stories of microRNAs. Exp Biol Med (Maywood). 239:1275–1279. 2014.PubMed/NCBI View Article : Google Scholar | |
Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grässer FA, Lenhof HP, et al: An estimate of the total number of true human miRNAs. Nucleic Acids Res. 47:3353–3364. 2019.PubMed/NCBI View Article : Google Scholar | |
Horvitz HR and Sulston JE: Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 96:435–454. 1980.PubMed/NCBI View Article : Google Scholar | |
Hammond SM: An overview of microRNAs. Adv Drug Deliv Rev. 87:3–14. 2015.PubMed/NCBI View Article : Google Scholar | |
Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004.PubMed/NCBI View Article : Google Scholar | |
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004.PubMed/NCBI View Article : Google Scholar | |
Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009.PubMed/NCBI View Article : Google Scholar | |
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT and Kim VN: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 125:887–901. 2006.PubMed/NCBI View Article : Google Scholar | |
Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y and Tsukihara T: A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326:1275–1279. 2009.PubMed/NCBI View Article : Google Scholar | |
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K and Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436:740–744. 2005.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Hur I, Park SY, Kim YK, Suh MR and Kim VN: The role of PACT in the RNA silencing pathway. EMBO J. 25:522–532. 2006.PubMed/NCBI View Article : Google Scholar | |
Khvorova A, Reynolds A and Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. Cell. 115:209–216. 2003.PubMed/NCBI View Article : Google Scholar | |
Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115:199–208. 2003.PubMed/NCBI View Article : Google Scholar | |
Kilikevicius A, Meister G and Corey DR: Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 50:617–634. 2022.PubMed/NCBI View Article : Google Scholar | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar | |
Samad AFA and Kamaroddin MF: Innovative approaches in transforming microRNAs into therapeutic tools. Wiley Interdiscip Rev RNA. 14(e1768)2023.PubMed/NCBI View Article : Google Scholar | |
Van Rooij E and Olson EN: MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nat Rev Drug Discov. 11:860–872. 2012.PubMed/NCBI View Article : Google Scholar | |
Forterre A, Komuro H, Aminova S and Harada M: A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers (Basel). 12(1852)2020.PubMed/NCBI View Article : Google Scholar | |
Nordenvall AS, Frisen L, Nordenstrom A, Lichtenstein P and Nordenskjold A: Population based nationwide study of hypospadias in Sweden, 1973 to 2009: Incidence and risk factors. J Urol. 191:783–789. 2014.PubMed/NCBI View Article : Google Scholar | |
Van der Horst HJ and de Wall LL: Hypospadias, all there is to know. Eur J Pediatr. 176:435–441. 2017.PubMed/NCBI View Article : Google Scholar | |
Fredell L, Lichtenstein P, Pedersen NL, Svensson J and Nordenskjold A: Hypospadias is related to birth weight in discordant monozygotic twins. J Urol. 160:2197–2199. 1998.PubMed/NCBI View Article : Google Scholar | |
Blaschko SD, Cunha GR and Baskin LS: Molecular mechanisms of external genitalia development. Differentiation. 84:261–268. 2012.PubMed/NCBI View Article : Google Scholar | |
Van der Zanden LF, van Rooij IA, Feitz WF, Franke B, Knoers NV and Roeleveld N: Aetiology of hypospadias: A systematic review of genes and environment. Hum Reprod Update. 18:260–283. 2012.PubMed/NCBI View Article : Google Scholar | |
Bouty A, Ayers KL, Pask A, Heloury Y and Sinclair AH: The genetic and environmental factors underlying hypospadias. Sex Dev. 9:239–259. 2015.PubMed/NCBI View Article : Google Scholar | |
Huang J, Su C, Lu P, Zhao X, Liu Y, Xie Q and Chen C: hsa_circ_0000417 downregulation suppresses androgen receptor expression and apoptotic signals in human foreskin fibroblasts via sponging miR-6756-5p. Mol Biol Rep. 50:6769–6781. 2023.PubMed/NCBI View Article : Google Scholar | |
Deng F, Zhao J, Jia W, Fu K, Zuo X, Huang L, Wang N, Xia H, Zhang Y, Fu W and Liu G: Increased hypospadias risk by GREM1 rs3743104[G] in the southern Han Chinese population. Aging (Albany NY). 13:13898–13908. 2021.PubMed/NCBI View Article : Google Scholar | |
Elias FM, Nishi MY, Sircili MHP, Bastista RL, Gomes NL, Ferrari MTM, Costa EMF, Denes FT, Mendonca BB and Domenice S: Elevated plasma miR-210 expression is associated with atypical genitalia in patients with 46,XY differences in sex development. Mol Genet Genomic Med. 10(e2084)2022.PubMed/NCBI View Article : Google Scholar | |
Peng QL, Zhao YW and Tian W: Testosterone promotes human foreskin fibroblast growth through miR-143-3p targeting IGFBP-3. J Men's Health. 19:15–25. 2023. | |
Chen J, Cui X, Li A, Li G and Sun F: Association of a GATA Binding protein 4 polymorphism with the risk of hypospadias in the Chinese children. Urol Int. 105:1018–1023. 2021.PubMed/NCBI View Article : Google Scholar | |
Shang Y, Kang Y, Sun J, Wei P, Yang J and Zhang H: MiR-145-modulated SOX9-mediated hypospadias through acting on mitogen-activated protein kinase signaling pathway. J Cell Physiol. 234:10397–10410. 2019.PubMed/NCBI View Article : Google Scholar | |
Tian RH, Guo KM, Han GH and Bai Y: Downregulation of MicroRNA-494 inhibits the TGF-beta1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L. Exp Mol Pathol. 115(104452)2020.PubMed/NCBI View Article : Google Scholar | |
Qian C, Dang X, Wang X, Xu W, Pang G, Chen Y and Liu C: Molecular mechanism of MicroRNA-200c regulating transforming growth factor-β (TGF-β)/SMAD family member 3 (SMAD3) pathway by targeting zinc finger E-Box binding homeobox 1 (ZEB1) in hypospadias in rats. Med Sci Monit. 22:4073–4081. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Hu J, Peng L and Zhao Y: MicroR-1199-5p targeting SRD5A2 promotes the biological behavior and EMT of hypospadias cells. Cell Mol Biol (Noisy-le-Grand). 70:122–128. 2024.PubMed/NCBI View Article : Google Scholar | |
Lan YF, Chen HH, Lai PF, Cheng CF, Huang YT, Lee YC, Chen TW and Lin H: MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol. 23:2012–2023. 2012.PubMed/NCBI View Article : Google Scholar | |
Gollavilli PN, Parma B, Siddiqui A, Yang H, Ramesh V, Napoli F, Schwab A, Natesan R, Mielenz D and Asangani IA: The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter. Oncogene. 40:2309–2322. 2021.PubMed/NCBI View Article : Google Scholar | |
Hu D, Ge Y, Xi Y, Chen J, Wang H, Zhang C, Cui Y, He L, Su Y, Chen J, et al: MicroRNA-145 gene modification enhances the retention of bone marrow-derived mesenchymal stem cells within corpus cavernosum by targeting kruppel-like factor 4. World J Mens Health. 42:638–649. 2024.PubMed/NCBI View Article : Google Scholar | |
Zheng W, Li T, Wei J, Zhang Y, Zuo Q and Lin Y: Identification of miR-145 as a regulator of the cardiomyocyte inflammatory response and oxidative stress under hyperglycemia. Exp Ther Med. 21(467)2021.PubMed/NCBI View Article : Google Scholar | |
Liu X, He DW, Zhang DY, Lin T and Wei GH: Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth factor-beta1 expression in fetal mouse genital tubercles. J Toxicol Environ Health A. 71:1289–1294. 2008.PubMed/NCBI View Article : Google Scholar | |
Willingham E and Baskin LS: Candidate genes and their response to environmental agents in the etiology of hypospadias. Nat Clin Pract Urol. 4:270–279. 2007.PubMed/NCBI View Article : Google Scholar | |
Baskin LS, Hayward SW, Sutherland RA, DiSandro MS, Thomson AA and Cunha GR: Cellular signaling in the bladder. Front Biosci. 2:d592–d595. 1997.PubMed/NCBI View Article : Google Scholar | |
Tomlinson DC, Freestone SH, Grace OC and Thomson AA: Differential effects of transforming growth factor-beta1 on cellular proliferation in the developing prostate. Endocrinology. 145:4292–4300. 2004.PubMed/NCBI View Article : Google Scholar | |
Tian YC, Chen YC, Chang CT, Hung CC, Wu MS, Phillips A and Yang CW: Epidermal growth factor and transforming growth factor-beta1 enhance HK-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway. Exp Cell Res. 313:2367–2377. 2007.PubMed/NCBI View Article : Google Scholar | |
Sanchez-Capelo A: Dual role for TGF-beta1 in apoptosis. Cytokine Growth Factor Rev. 16:15–34. 2005.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Liu X, Huang F, Liu Y, Cao X, Shen L, Long C, He D, Lin T and Wei G: Epithelial-mesenchymal transformation and apoptosis in rat urethra development. Pediatr Res. 82:1073–1079. 2017.PubMed/NCBI View Article : Google Scholar | |
Baskin LS, Erol A, Jegatheesan P, Li Y, Liu W and Cunha GR: Urethral seam formation and hypospadias. Cell Tissue Res. 305:379–387. 2001.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Huang F, Liu Y, Li D, Zhou Y, Shen L, Long C, Liu X and Wei G: TGF-β1 relieves epithelial-mesenchymal transition reduction in hypospadias induced by DEHP in rats. Pediatr Res. 87:639–646. 2020.PubMed/NCBI View Article : Google Scholar | |
Kubiczkova L, Sedlarikova L, Hajek R and Sevcikova S: TGF-β-an excellent servant but a bad master. J Transl Med. 10(183)2012.PubMed/NCBI View Article : Google Scholar | |
Chen T, Li Q, Xu J, Ding K, Wang Y, Wang W, Li S and Shen Y: Mutation screening of BMP4, BMP7, HOXA4 and HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet. 15:23–28. 2007.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Zhang Y, Lin Z, Wu K, He Z, Zhu D, Zhao J, Zhang C and Fan Y: Silencing of histone deacetylase 3 suppresses the development of esophageal squamous cell carcinoma through regulation of miR-494-mediated TGIF1. Cancer Cell Int. 22(191)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Zhu Y, Hu L, Yan F and Chen J: miR-494 induces EndMT and promotes the development of HCC (Hepatocellular Carcinoma) by targeting SIRT3/TGF-β/SMAD signaling pathway. Sci Rep. 9(7213)2019.PubMed/NCBI View Article : Google Scholar | |
Maharati A, Akhlaghipour I, Taghehchian N, Farshchian Yazdi Z and Moghbeli M: Role of microRNA-494 in tumor progression. Am J Transl Res. 15:6342–6361. 2023.PubMed/NCBI | |
Gao S, Alarcon C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P and Massagué J: Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell. 36:457–468. 2009.PubMed/NCBI View Article : Google Scholar | |
Chu MQ, Zhang LC, Yuan Q, Zhang TJ and Zhou JD: Distinct associations of NEDD4L expression with genetic abnormalities and prognosis in acute myeloid leukemia. Cancer Cell Int. 21(615)2021.PubMed/NCBI View Article : Google Scholar | |
Xu N, Papagiannakopoulos T, Pan G, Thomson JA and Kosik KS: MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 137:647–658. 2009.PubMed/NCBI View Article : Google Scholar | |
Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K and Aplin JD: MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci. 128:804–814. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Zhang X, Yang Z, Du H, Wu Z, Gong J, Yan J and Zheng Q: MiR-145 regulates PAK4 via the MAPK pathway and exhibits an antitumor effect in human colon cells. Biochem Biophys Res Commun. 427:444–449. 2012.PubMed/NCBI View Article : Google Scholar | |
Yamaguchi K, Ishikawa T, Kondo Y and Fujisawa M: Cisplatin regulates Sertoli cell expression of transferrin and interleukins. Mol Cell Endocrinol. 283:68–75. 2008.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Li Q, Xu J, Liu Q, Wang W, Lin Y, Ma F, Chen T, Li S and Shen Y: Mutation analysis of five candidate genes in Chinese patients with hypospadias. Eur J Hum Genet. 12:706–712. 2004.PubMed/NCBI View Article : Google Scholar | |
Vidal VP, Chaboissier MC, de Rooij DG and Schedl A: Sox9 induces testis development in XX transgenic mice. Nat Genet. 28:216–217. 2001.PubMed/NCBI View Article : Google Scholar | |
Olney PN, Kean LS, Graham D, Elsas LJ and May KM: Campomelic syndrome and deletion of SOX9. Am J Med Genet. 84:20–24. 1999.PubMed/NCBI | |
Zeinali T, Karimi L, Hosseinahli N, Shanehbandi D, Mansoori B, Mohammadi A, Hajiasgharzadeh K, Babaloo Z, Majidi-Zolbanin J and Baradaran B: Overexpression of miRNA-145 induces apoptosis and prevents proliferation and migration of MKN-45 gastric cancer cells. EXCLI J. 19:1446–1458. 2020.PubMed/NCBI View Article : Google Scholar | |
Ye D, Shen Z and Zhou S: Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res. 11:969–979. 2019.PubMed/NCBI View Article : Google Scholar | |
Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, Saini SK, Kaushik M, Arora A, Kumari U, et al: miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int. 19(230)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Guo H, Qian G, Ge S, Ji H, Hu X and Chen W: MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network. Mol Cancer. 9(211)2010.PubMed/NCBI View Article : Google Scholar | |
Suzuki YJ: Cell signaling pathways for the regulation of GATA4 transcription factor: Implications for cell growth and apoptosis. Cell Signal. 23:1094–1099. 2011.PubMed/NCBI View Article : Google Scholar | |
Grepin C, Nemer G and Nemer M: Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development. 124:2387–2395. 1997.PubMed/NCBI View Article : Google Scholar | |
Silva TS, Richeti F, Cunha DP, Amarante AC, de Souza Leao JQ and Longui CA: Androgen receptor mRNA measured by quantitative real time PCR is decreased in the urethral mucosa of patients with middle idiopathic hypospadias. Horm Metab Res. 45:495–500. 2013.PubMed/NCBI View Article : Google Scholar | |
Pichler R, Djedovic G, Klocker H, Heidegger I, Strasak A, Loidl W, Bektic J, Skradski V, Horninger W and Oswald J: Quantitative measurement of the androgen receptor in prepuces of boys with and without hypospadias. BJU Int. 112:265–270. 2013.PubMed/NCBI View Article : Google Scholar | |
Allera A, Herbst MA, Griffin JE, Wilson JD, Schweikert HU and McPhaul MJ: Mutations of the androgen receptor coding sequence are infrequent in patients with isolated hypospadias. J Clin Endocrinol Metab. 80:2697–2699. 1995.PubMed/NCBI View Article : Google Scholar | |
Batista RL, Costa EMF, Rodrigues AS, Gomes NL, Faria JA Jr, Nishi MY, Arnhold IJP, Domenice S and Mendonca BB: Androgen insensitivity syndrome: A review. Arch Endocrinol Metab. 62:227–235. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Li H, Shi Y, Wang S, Xu Y, Li H and Liu D: miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway. Biosci Rep. 40(BSR20193419)2020.PubMed/NCBI View Article : Google Scholar | |
Jiang B, Yuan C, Han J, Shen M, Zhou X and Zhou L: miR-143-3p inhibits the differentiation of osteoclast induced by synovial fibroblast and monocyte coculture in adjuvant-induced arthritic rats. Biomed Res Int. 2021(5565973)2021.PubMed/NCBI View Article : Google Scholar | |
Tang J, Pan H, Wang W, Qi C, Gu C, Shang A and Zhu J: MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer. Clin Transl Oncol. 23:2323–2334. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang G, Liu Z, Zhong J and Lin L: Circ-ACAP2 facilitates the progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur J Clin Invest. 51(e13607)2021.PubMed/NCBI View Article : Google Scholar | |
Long Z, Gong F, Li Y, Fan Z and Li J: Circ_0000285 regulates proliferation, migration, invasion and apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis. Cancer Cell Int. 20(481)2020.PubMed/NCBI View Article : Google Scholar | |
Zielinska HA, Daly CS, Alghamdi A, Bahl A, Sohail M, White P, Dean SR, Holly JMP and Perks CM: Interaction between GRP78 and IGFBP-3 affects tumourigenesis and prognosis in breast cancer patients. Cancers (Basel). 12(3821)2020.PubMed/NCBI View Article : Google Scholar | |
Cai Q, Dozmorov M and Oh Y: IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer. Cells. 9(1261)2020.PubMed/NCBI View Article : Google Scholar | |
Kerr A and Baxter RC: Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene. 41:3385–3393. 2022.PubMed/NCBI View Article : Google Scholar | |
Li CL, Liu B, Wang ZY, Xie F, Qiao W, Cheng J, Kuang JY, Wang Y, Zhang MX and Liu DS: Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol. 139:98–112. 2020.PubMed/NCBI View Article : Google Scholar | |
Tao A, Wang X and Li C: Effect of lycopene on oral squamous cell carcinoma cell growth by inhibiting IGF1 pathway. Cancer Manag Res. 13:723–732. 2021.PubMed/NCBI View Article : Google Scholar | |
Xie F, Li Y, Wang M, Huang C, Tao D, Zheng F, Zhang H, Zeng F, Xiao X and Jiang G: Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer. 17(144)2018.PubMed/NCBI View Article : Google Scholar | |
Ding C, Ding X, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P and Xue W: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 11(929)2020.PubMed/NCBI View Article : Google Scholar | |
Barbu MG, Thompson DC, Suciu N, Voinea SC, Cretoiu D and Predescu DV: The roles of MicroRNAs in male infertility. Int J Mol Sci. 22(2910)2021.PubMed/NCBI View Article : Google Scholar | |
Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li X and Sun F: Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 7(13)2009.PubMed/NCBI View Article : Google Scholar | |
Redman CW and Staff AC: Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 213 (4 Suppl):S9.e1, S9–S11. 2015.PubMed/NCBI View Article : Google Scholar | |
Sheriff FR, Lopez A, Lupo PJ, Seth A, Jorgez C and Agopian AJ: Maternal hypertension and hypospadias in offspring: A systematic review and meta-analysis. Birth Defects Res. 111:9–15. 2019.PubMed/NCBI View Article : Google Scholar | |
Gunel T, Zeybek YG, Akcakaya P, Kalelioglu I, Benian A, Ermis H and Aydınlı K: Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 10:4034–4040. 2011.PubMed/NCBI View Article : Google Scholar | |
Jaszczuk I, Koczkodaj D, Kondracka A, Kwasniewska A, Winkler I and Filip A: The role of miRNA-210 in pre-eclampsia development. Ann Med. 54:1350–1356. 2022.PubMed/NCBI View Article : Google Scholar | |
Ackerman D and Gems D: Insulin/IGF-1 and hypoxia signaling act in concert to regulate iron homeostasis in Caenorhabditis elegans. PLoS Genet. 8(e1002498)2012.PubMed/NCBI View Article : Google Scholar |