1
|
Zhu S, Yan X, Xiang Z, Ding HF and Cui H:
Leflunomide reduces proliferation and induces apoptosis in
neuroblastoma cells in vitro and in vivo. PLoS One. 8:e715552013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Li T, Wang L, Ke XX, et al: DNA-damaging
drug-induced apoptosis sensitized by N-myc in neuroblastoma cells.
Cell Biol Int. 36:331–337. 2012. View Article : Google Scholar
|
3
|
Li T, Cui ZB, Ke XX, et al: Essential role
for p53 and caspase-9 in DNA damaging drug-induced apoptosis in
neuroblastoma IMR32 cells. DNA Cell Biol. 30:1045–1050. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mao L, Ding J, Zha Y, et al: HOXC9 links
cell-cycle exit and neuronal differentiation and is a prognostic
marker in neuroblastoma. Cancer Res. 71:4314–4324. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ambros IM, Hata J, Joshi VV, et al:
Morphologic features of neuroblastoma (Schwannian stroma-poor
tumors) in clinically favorable and unfavorable groups. Cancer.
94:1574–1583. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimada H, Ambros IM, Dehner LP, et al:
The international neuroblastoma pathology classification (the
Shimada system). Cancer. 86:364–372. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brodeur GM: Neuroblastoma: biological
insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Cheung NK and Dyer MA: Neuroblastoma:
developmental biology, cancer genomics and immunotherapy. Nat Rev
Cancer. 13:397–411. 2013. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Sidell N: Retinoic acid-induced growth
inhibition and morphologic differentiation of human neuroblastoma
cells in vitro. J Natl Cancer Inst. 68:589–596. 1982.PubMed/NCBI
|
10
|
Hämmerle B, Yañez Y, Palanca S, et al:
Targeting neuroblastoma stem cells with retinoic acid and
proteasome inhibitor. PLoS One. 8:e767612013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Reynolds CP, Matthay KK, Villablanca JG
and Maurer BJ: Retinoid therapy of high-risk neuroblastoma. Cancer
Lett. 197:185–192. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Volchenboum SL and Cohn SL: Progress in
defining and treating high-risk neuroblastoma: lessons from the
bench and bedside. J Clin Oncol. 27:1003–1004. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pevny L, Simon MC, Robertson E, et al:
Erythroid differentiation in chimaeric mice blocked by a targeted
mutation in the gene for transcription factor GATA-1. Nature.
349:257–260. 1991. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Asnagli H, Afkarian M and Murphy KM:
Cutting edge: Identification of an alternative GATA-3 promoter
directing tissue-specific gene expression in mouse and human. J
Immunol. 168:4268–4271. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou Y, Lim KC, Onodera K, et al: Rescue
of the embryonic lethal hematopoietic defect reveals a critical
role for GATA-2 in urogenital development. EMBO J. 17:6689–6700.
1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Craven SE, Lim KC, Ye W, Engel JD, de
Sauvage F and Rosenthal A: Gata2 specifies serotonergic neurons
downstream of sonic hedgehog. Development. 131:1165–1173. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Dasen JS, O’Connell SM, Flynn SE, et al:
Reciprocal interactions of Pit1 and GATA2 mediate signaling
gradient-induced determination of pituitary cell types. Cell.
97:587–598. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yamamoto M, Ko LJ, Leonard MW, Beug H,
Orkin SH and Engel JD: Activity and tissue-specific expression of
the transcription factor NF-E1 multigene family. Genes Dev.
4:1650–1662. 1990. View Article : Google Scholar : PubMed/NCBI
|
19
|
Whyatt DJ, deBoer E and Grosveld F: The
two zinc finger-like domains of GATA-1 have different DNA binding
specificities. EMBO J. 12:4993–5005. 1993.PubMed/NCBI
|
20
|
Tsarovina K, Pattyn A, Stubbusch J, et al:
Essential role of Gata transcription factors in sympathetic neuron
development. Development. 131:4775–4786. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kornhauser JM, Leonard MW, Yamamoto M,
LaVail JH, Mayo KE and Engel JD: Temporal and spatial changes in
GATA transcription factor expression are coincident with
development of the chicken optic tectum. Brain Res Mol Brain Res.
23:100–110. 1994. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pata I, Studer M, van Doorninck JH, et al:
The transcription factor GATA3 is a downstream effector of Hoxb1
specification in rhombomere 4. Development. 126:5523–5531.
1999.PubMed/NCBI
|
23
|
Tsarovina K, Reiff T, Stubbusch J, et al:
The Gata3 transcription factor is required for the survival of
embryonic and adult sympathetic neurons. J Neurosci.
30:10833–10843. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Van Esch H and Devriendt K: Transcription
factor GATA3 and the human HDR syndrome. Cell Mol Life Sci.
58:1296–1300. 2001. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pattyn A, Simplicio N, van Doorninck JH,
Goridis C, Guillemot F and Brunet JF: Ascl1/Mash1 is required for
the development of central serotonergic neurons. Nat Neurosci.
7:589–595. 2004. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Lim KC, Lakshmanan G, Crawford SE, Gu Y,
Grosveld F and Engel JD: Gata3 loss leads to embryonic lethality
due to noradrenaline deficiency of the sympathetic nervous system.
Nat Genet. 25:209–212. 2000. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Milo M, Cacciabue-Rivolta D, Kneebone A,
et al: Genomic analysis of the function of the transcription factor
gata3 during development of the mammalian inner ear. PLoS One.
4:e71442009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ory DS, Neugeboren BA and Mulligan RC: A
stable human-derived packaging cell line for production of high
titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc
Natl Acad Sci USA. 93:11400–11406. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen QR, Song YK, Wei JS, et al: An
integrated cross-platform prognosis study on neuroblastoma
patients. Genomics. 92:195–203. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Asgharzadeh S, Pique-Regi R, Sposto R, et
al: Prognostic significance of gene expression profiles of
metastatic neuroblastomas lacking MYCN gene amplification. J Natl
Cancer Inst. 98:1193–1203. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cui H, Hu B, Li T, et al: Bmi-1 is
essential for the tumorigenicity of neuroblastoma cells. Am J
Pathol. 170:1370–1378. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cui H, Ma J, Ding J, Li T, Alam G and Ding
HF: Bmi-1 regulates the differentiation and clonogenic self-renewal
of I-type neuroblastoma cells in a concentration-dependent manner.
J Biol Chem. 281:34696–34704. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lambert DG, Ghataorre AS and Nahorski SR:
Muscarinic receptor binding characteristics of a human
neuroblastoma SK-N-SH and its clones SH-SY5Y and SH-EP1. Eur J
Pharmacol. 165:71–77. 1989. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sidell N, Altman A, Haussler MR and Seeger
RC: Effects of retinoic acid (RA) on the growth and phenotypic
expression of several human neuroblastoma cell lines. Exp Cell Res.
148:21–30. 1983. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pedersen WA, Becker LE and Yeger H:
Expression and distribution of peripherin protein in human
neuroblastoma cell lines. Int J Cancer. 53:463–470. 1993.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sommer L, Shah N, Rao M and Anderson DJ:
The cellular function of MASH1 in autonomic neurogenesis. Neuron.
15:1245–1258. 1995. View Article : Google Scholar : PubMed/NCBI
|
37
|
Horton S, Meredith A, Richardson JA and
Johnson JE: Correct coordination of neuronal differentiation events
in ventral forebrain requires the bHLH factor MASH1. Mol Cell
Neurosci. 14:355–369. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Alam G, Cui H, Shi H, et al: MYCN promotes
the expansion of Phox2B-positive neuronal progenitors to drive
neuroblastoma development. Am J Pathol. 175:856–866. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Grandori C, Cowley SM, James LP and
Eisenman RN: The Myc/Max/Mad network and the transcriptional
control of cell behavior. Annu Rev Cell Dev Biol. 16:653–699. 2000.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Adhikary S and Eilers M: Transcriptional
regulation and transformation by Myc proteins. Nat Rev Mol Cell
Biol. 6:635–645. 2005. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Schwab M, Alitalo K, Klempnauer KH, et al:
Amplified DNA with limited homology to myc cellular oncogene is
shared by human neuroblastoma cell lines and a neuroblastoma
tumour. Nature. 305:245–248. 1983. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Kohl NE, Kanda N, Schreck RR, et al:
Transposition and amplification of oncogene-related sequences in
human neuroblastomas. Cell. 35:359–367. 1983. View Article : Google Scholar : PubMed/NCBI
|
43
|
Akter J, Takatori A, Hossain MS, et al:
Expression of NLRR3 orphan receptor gene is negatively regulated by
MYCN and Miz-1, and its downregulation is associated with
unfavorable outcome in neuroblastoma. Clin Cancer Res.
17:6681–6692. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Seeger RC, Siegel SE and Sidell N:
Neuroblastoma: clinical perspectives, monoclonal antibodies, and
retinoic acid. Ann Intern Med. 97:873–884. 1982. View Article : Google Scholar : PubMed/NCBI
|